
Presented 09th of February, 2017

To Security Day 2017, Lille

By Thomas Chauchefoin

WordPress Security

Hunting security bugs in a supermarket

2 / 30

() { x;}; echo Content-type :; whoami

 Security ninja @Synacktiv

 What we do:
 Internal / external security assessments
 Red Team
 Code review
 Exploit development
 Formations
 Acrobatic juggling

3 / 30

() { x;}; echo Content-type :; groups

 They are too numerous... We need more
ninjas!

 Internship positions:
 Security assessments framework developer
 0-days hunter
 Automated testing on Android applications

 Pentester positions as well

 Ping us at contact@synacktiv.com

mailto:contact@synacktiv.com

4 / 30

WordWhat?

 Content Management System (CMS) by
Automattic

 Written in PHP
 With 5.2 support enforced (EOL: 6 years ago!)

 179519 lines of code right now (counted by
hand)

 Runs 27% of all websites (source: Wikipedia)
 53,4 % are not using a CMS
 Easy to detect (wp-includes, wp-content, ...)

5 / 30

Security of the core

 Auto-updates are enabled if the permissions on
the folders are correctly set
 Leaks PHP version, MySQL version, blogs count,

users count...

 Fetches the last release from
api.wordpress.com

 You compromise it, you win, nothing’s signed, but
maybe one day... (#39309, #25052)

 Maximal mayhem: block future auto-updates
 Potential RCE on this host was silently patched: “Add

 support [...] documentation.”

https://core.trac.wordpress.org/ticket/39309
https://core.trac.wordpress.org/ticket/25052
https://meta.trac.wordpress.org/changeset/3983/
https://meta.trac.wordpress.org/changeset/3983/

6 / 30

Security of the core

 “Content spoofing” in REST API (< 4.7.2)
 “As part of a vulnerability research project […] on

WordPress, we discovered was a severe content
injection (privilege escalation) vulnerability
affecting the REST API.”

 “We disclosed the vulnerability to the WordPress
Security Team who handled it extremely well.
They worked closely [...] security providers aware
and patched before this became public.”

 “A fix for this was silently included on version
4.7.2 along with other less severe issues.”

7 / 30

Security of the core

 MySQL’s utf8 ≠ utf8mb4

 Without the strict mode, it’ll truncate the value
before insertion...

 ...but your server-side check will be performed
on the whole string

 Insert two comments to form a new tag:
 <q cite=‘xx
 ’ onmousehover=‘...’>

 14 months to fix the vulnerability (4.1.2)

8 / 30

Extending WordPress

 Core can be extended with themes and plugins

 More than 48k plugins, manually reviewed (??)

 Some statistics for each target plugin
 Active installs: 100k+, 200k+, 2M+…
 Download history with real statistics
 Active versions repartition

 WordPress <3 monorepos:
 https://plugins.svn.wordpress.org/
 1.6M ~ revisions and counting, you can’t just clone it

https://plugins.svn.wordpress.org/

9 / 30

So what?

 The facts
 More than one million source code files
 Written in PHP, with 5.2 support in mind
 Mostly developed by individuals, small agencies
 They will can do things wrong, grep it!

10 / 30

A10: Open redirects

 wp_redirect() vs wp_safe_redirect()

 Host checking
 Always prevents response splitting
 Works with data://, for all your phishing fantasies

 Mostly useful when chained with other vulnerabilities

 Not always vulnerable, more especially when getting
prefixed
 get_bloginfo('url')

 exit() and let die()

11 / 30

A09: Vulnerable components

 PHPMailer

 84 occurrences of the class in all the plugins
 Not directly exploitable
 Already bundled by WordPress

 php-jwt

 5 occurrences of the class

 Core dependencies are not handled with
composer

12 / 30

A08: Cross-Site Request Forgeries

 Per-request nonces
 Not one-time use (even if it’s called a nonce)
 Tied to one user, action, session, window of times
 Depends of NONCE_SALT, NONCE_KEY
 wp_nonce_field(), wp_verify_nonce()

 Check the referrer too!

 Hard to grep for, need a better idea

13 / 30

A07: Missing Function Level
Access Control
 What’s the purpose of is_admin()?

 What’s the purpose of is_user_admin()?

 What’s the purpose of is_super_admin()?
 current_user_can(cap1, cap2…)

 AJAX endpoints are often missed:

 Call it at /wp-admin/admin-ajax.php?action=

 wp_ajax_* / wp_ajax_nopriv_*

 add_action()

14 / 30

A06: Sensitive data exposure

 A lot of administrative plugins are “doing the
things wrong. Sad!”.
 Wrong permissions / extensions on the files
 Predictable paths / names
 LFI / AFD

 Directory listing on the download folder may
help

 Be restrictive with your exotic parsers

15 / 30

A05: Security misconfiguration

 “put your unique phrase here”
 It may call https://api.wordpress.org/secret-

key/1.1/salt/—not funny.
 CA bundle: ## Includes a WordPress Modification -

We include the 'legacy' 1024bit certificates for
backward compatibility. See
https://core.trac.wordpress.org/ticket/34935#commen
t:10 Wed Sep 16 08:58:11 2015

 Still includes WoSign and Startcom, now removed
from Mozilla’s list

 Bake smelly authentication cookies

16 / 30

A05: Security misconfiguration

 But wait, there is a plugin for it!!!

 “Salt Shaker enhances WordPress security by
changing WordPress security keys and salts
manually and automatically.”

 It’s just using file_get_contents on the API
 > PHP5.6: “All encrypted client streams now enable

peer verification by default.”

 It’ll also create a wp-config.php.tmp :^)

17 / 30

A05: Security misconfiguration

 A lot of HTTP calls, everywhere
 Credits
 Importers plugins
 Browser needs update?

 Others are HTTPS, “if supported”

 The WordPress development team made
assumptions like
 Your usernames are public, so their enumeration is OK
 Full path disclosures are a configuration issue, don’t you

run your instance on a dedicated server?

18 / 30

A04: Direct Object Reference

 Don’t circumvent core mechanisms
 get_post()
 get_user_data()
 …

19 / 30

A03: Cross-Site Scripting

 It’s a problem of output encoding, not of
sanitization

 Don’t forget the context:
 JavaScript code,
 HTML attribute,
 Inline content,
 etc.

20 / 30

A03: Cross-Site Scripting

 It’s a problem of validation and output
encoding

 sanitize_*() functions family

 Don’t forget the context
 JavaScript code: esc_js(),
 HTML attribute: esc_attr(),
 Inline content: esc_html(),
 etc.

21 / 30

A03: Cross-Site Scripting

 Sounds lame but It’ll easily lead to server
compromise

 You can bypass nonces and edit files
 Make a request via XHR,
 Extract _wpnonce, _wp_http_referer,

 Send the action=update request to
/wp-admin/theme-editor.php.

 You can also install a malicious plugins, if the
editor is disabled

22 / 30

A02: Broken Authentication and
Session Management
 Hashes are stored in the PHPass format

 14000 hashes/s ~ on my laptop
 Future-proof?

 Everything can be overloaded by plugins,
authentication too

 Cool target functions
 wp_set_auth_cookie()
 wp_login()
 wp_signon()

23 / 30

A01: Injection

 You name it, SQL injections

 Core functions should be safe
 CVE-2017-5611, “Ensure that queries work

correctly with post type names with special
characters”. Yep, that was silently patched too.

 People will still misuse $wpdb

 Common miscomprehension of prepared
statements

 Or even mysql_*()!

24 / 30

A01: Injection

 PHP Object Injections are in da place too

 Serialization: creating a string representation
of the state of the instance of an object

 unserialize(), maybe_unserialize()

 Forget class whitelisting, thanks PHP 5.2

 It much more common than you may think

25 / 30

A01: Injection

 Crafting a popchain
 Find an entrypoint

 __wakeup()
 __destruct()
 __toString()
 __call()
 __set()
 __get()

 No autoloader in Wordpress, but put a breakpoint
and list available classes and methods

26 / 30

A01: Injection

 Crafting a popchain
 Define an objective

 Read the configuration file?
 Delete a file?
 Execute code or commands?

 Identify the needed function, depending of the
objective

 Find a path between two!
 A popchain was presented by Sam Thomas in

2015, abusing translations

27 / 30

A01: Injection

 translations.php

function make_plural_form_function($nplurals, $expression) {
$expression = str_replace('n', '$n', $expression);
$func_body = "

\$index = (int)($expression);
return (\$index < $nplurals)?
\$index : $nplurals - 1;";

return create_function('$n', $func_body);
}

28 / 30

A01: Injection

 Craft the right PO file
 msgid ""

msgstr ""

"Content-Type: text/plain; charset=UTF-8\n"

"Plural-Forms: nplurals = 2; plural =
die(eval($_GET['x']));"

 When unserializing a WP_Theme object, you
can force it to fetch a .mo file over the network
 Not all schemes are supported due to

is_readable(), but FTP is

29 / 30

Conclusion

 Huge attack surface—don’t miss that!

 Monitor new commits on the core for juicy 1days

 Automate everything
 Reporting is the less fun part

 Audit private plugins?

 Do bug bounties :-)
 pluginvulnerabilities.com (if > 100k+ active installs)
 HackerOne, Bugcrowd… you name it

 30

THANKS FOR YOUR ATTENTION!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

