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Escaping the Safari Sandbox: 
A tour of WebKit IPC
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22Who am I?

 Quentin Meffre (@0xdagger)
 Security researcher at Synacktiv
 Vulnerability research & Exploitation

 Synacktiv
 Offensive security company
 +170 ninjas
 We are hiring!



  
3 / 42

33Introduction



  
4 / 42

44Introduction



  
5 / 42

55WebKit

 Browser engine
 Developed by Apple
 Mainly used by Safari
 Initial release in 2005

 Ships everything to build a browser
 JavaScript engine
 DOM/rendering engine
 Web APIs
 User Interface API
 Etc.
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66Architecture

 Initial architecture
 Single process
 Too much privileges

 Bad from a security point of view
 Compromise the process → Game Over
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77Architecture

 WebKit2!
 Multi-process

 UIProcess
 Most privileged

 WebContent
 Less privileged…
 …still too much
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88Architecture
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99WebContent

 Most exposed process
 DOM rendering
 JavaScript engine
 Web APIs implementation

 Almost no privileges
 Hardened sandbox profile

 Can use sandbox extensions…
 ...require user permission

 WebKit processes expose a large surface

IOKit 0
Unix syscalls ~90
Mach traps ~30
MIG routines ~20
Userland services 0
WebKit process 3
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1010NetworkProcess

 Network-related process
 Loading remote/local resources
 Web APIs implementation

 CacheAPI
 SharedWorker
 etc.

 Larger kernel and userland surface
 Few network-related syscalls
 Access to 1 IOKit
 Communicates with some services
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1111GPUProcess

 Video and graphics processing
 Communicates with GPU (via ANGLE)
 Web APIs implementation

 WebGL
 WebGPU!

 Not reachable anymore
 Etc.

 Data parsing
 Font, WebRTC

 Almost same sandbox as WebContent
 Few IOKits and services
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1212UIProcess

 Main Safari process
 Most privileged WebKit process

 Display on screen
 User interaction
 Process management
 User permissions management

 Camera
 Microphone
 etc.

 No specific sandbox
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1313WebKit2

 WebKit processes are extensions¹
 Services before iOS 17.4

 Communicate through Mach messages
 UIProcess starts every WebKit process

1: https://developer.apple.com/documentation/extensionkit?language=objc

https://developer.apple.com/documentation/extensionkit?language=objc
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1414WebKit2

 UIProcess allows WebContent to communicate with other 
processes
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1515WebKit2

 Processes have their own dedicated connection
 Messages are filtered based on connection type



  
16 / 42

1616WebKit2

 Message starts with a 
mach_msg_header_t

 Followed by a message header
 Custom encoder/decoder

 Integer, string, floating number
 Memory entry, Objective-C 

object
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1717Objective-C decoding

 WebKit2 can send Objective-C objects
 Based on NSKeyedArchiver and NSKeyedUnarchiver

 Objects are serialized as BPlist
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1818Objective-C decoding

 Very powerful
 Lots of objects can be encoded/decoded
 Supports cyclic decoding

 Historically lots of exploits abused the Objective-C deserializer¹²³
 Apple starts killing exploitation methods...

1: https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
2: https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
3: https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html
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1919Objective-C decoding

 NSSecureCoding
 Must specify decoded type
 Raise exception if decoded object type != specified type
 Allows to decode subclasses of the specified type!

 If NSObject is in the allowed list → arbitrary deserialization!
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2020Objective-C decoding

 Trust restrictions
 Applied to Platform Binary and Apple applications

 Raises an exception if NSObject is in the allowed list
 Collection classes must explicitly be in the allowed list

 NSArray
 NSSet
 etc.

 Disable many features of NSPredicate
 Disable cyclic decoding
 Decoding must use NSSecureCoding

 Can’t easily trigger arbitrary Objective-C deserialization 
anymore
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2121Objective-C decoding

 Strict mode
 Applied to WebKit processes

- (void)_enableStrictSecureDecodingMode;
 Even more restrictive than Secure Coding mode

 Can’t decode subclasses anymore
 Stops attacker from decoding some sensitive object fields

 Breaks some exploitations methods
 Very few Objective-C objects can still be decoded in WebKit
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2222libPas

 WebKit has its own heap allocator
 “Libpas is a beast of a malloc, designed for speed, memory 

efficiency, and type safety.”, Filip Pizlo
 Exposes API

 FastMalloc
 ISOHeap

 Still documented
 Few WebKit objects uses this API

 GigaCage, JITHeap
 Not relevant for this talk
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2323libPas

 FastMalloc
 Based on Thread Local Cache
 Almost every WebKit object uses this API
 Sorts allocations based on their sizes
 Few security protections

 Good control over the heap
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2424libPas

 Probabilistic Guard Malloc
 Tries to catch memory corruption bugs in the wild

 Adds guard pages and segregation
 1/1000 probability to have the feature enabled

 1 allocation every 4000-5000 is guarded
 Not a security hardening
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2525libPas

 TZone
 Disabled by default! (for now...)
 Objects information is stored in Mach-O 

section __tzone_descs
 Allocations are stored into buckets

 Based on their size and alignment
 AND a random seed

 Generated by the kernel
 Can’t predicate which objects share the 

same buckets
 Tries to break heap-based exploit reliability
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2626Default userland malloc

 Almost every process uses this heap allocator
 Historically hacker friendly¹

 iOS 17 introduced a little change...

1: https://www.synacktiv.com/ressources/Sthack_2018_Heapple_Pie.pdf

https://www.synacktiv.com/ressources/Sthack_2018_Heapple_Pie.pdf
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2727Default userland malloc

 malloc() is replaced by malloc_type_malloc()
 Second parameter is a tag generated by the compiler
 Looks like a new hardened allocator, but…

 … malloc_type_malloc() still uses the old implementation
 The tag is never used (as of iOS 17.4)
 At least WebKit processes don’t use it 

 Is typed malloc coming to userland?
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2828PAC Bypass

 Need to bypass PAC again outside of WebContent
 WebContent has its own PAC keys

 Latest PAC bypasses targeted the DYLD loader¹²
 Very interesting target

 Lots of optimizations
 Has to sign pointers at runtime

 dlsym()
 Relocation

1: https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html
2: https://media.ccc.de/v/37c3-11859-operation_triangulation_what_you_get_when_attack_iphones_of_researchers

https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html
https://media.ccc.de/v/37c3-11859-operation_triangulation_what_you_get_when_attack_iphones_of_researchers
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2929PAC Bypass

 Structures used to keep information about loaded images
 Initially not protected
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3030PAC Bypass

 Build fake Mach-O in memory
 dlsym() returns arbitrary signed pointers
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3131PAC Bypass

 DYLD now protects its internal structures
 Structures are allocated in VM_PROT_READ pages
 Switches to VM_PROT_WRITE when it needs to write
 Switches back to VM_PROT_READ after writing

 Attackers can’t corrupt DYLD structures anymore…
 …but if attackers can call mprotect() they can change pages 

protections
 Operation Triangulation did that
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3232PAC Bypass

 DYLD pages are now 
protected using SPRR
 Pages mapped with 
VM_FLAGS_TPRO

 Protections 
dynamically changed 
by DYLD

 Operation 
Triangulation PAC 
bypass doesn’t work 
anymore
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3333PAC Bypass

 The GPU full chain exploits a race condition in dlsym()
 Corrupts the symbol name on the stack before it is used
 Sign arbitrary symbols
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3434Execution context

 Can’t map RWX pages
 Only WebContent and few other processes

 Useful to have an execution context in the compromised process
 To pivot into the compromised process
 To implement the next stage

 Spawn a JavaScript engine!
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3535Execution context

 JavaScriptCore exposes an Objective-C API
- (JSValue*)evaluateScript:(NSString*);

- (JSValue*)objectForKeyedSubscript:(id);

- (void)setObject:(id) forKeyedSubscript:(id);

 Corrupt JSValue inside the JavaScript engine
 Transfer primitives

 Apple doesn’t like this exploitation method...
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3636Execution context
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3737Execution context

 Can’t spawn JavaScript engine in the GPU process anymore
 Opcode list is trashed at process initialization
 VM::VM initialization is forbidden

 Or is it?
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3838Execution context

 Checked in the VM constructor
 vmCreationDisallowed must be set to crash the process

VM::VM(VMType vmType, HeapType heapType, WTF::RunLoop* runLoop, bool* success)
// ...
    if (UNLIKELY(vmCreationShouldCrash || g_jscConfig.vmCreationDisallowed))
        CRASH_WITH_EXTRA_SECURITY_IMPLICATION_AND_INFO(/* ... */);
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3939Execution context

 Developers forgot (or not?) to set vmCreationDisallowed

void GPU_SERVICE_INITIALIZER(xpc_connection_t connection, xpc_object_t initializerMessage)
{
    g_jscConfig.vmEntryDisallowed = true;
    g_wtfConfig.useSpecialAbortForExtraSecurityImplications = true;

    WTF::initializeMainThread();
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4040Execution context

 Bypass JavaScript engine hardening
 PAC bypass is mandatory
 Restore each signed functions pointers in g_opcodeMap
 Profit!
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4141Conclusion

 Escaping the WebContent sandbox through WebKit processes 
looks promising…
 … but increases full-chains complexity

 DYLD is a good PAC bypass target…
 … lots of PAC bypasses killed

 iOS has never had so many userland mitigations…
 … but in 2023 attackers were still able to build a full-chain from 

WebContent :-)
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https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/
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