
1

Escaping the Safari Sandbox:
A tour of WebKit IPC

2 / 42

22Who am I?

 Quentin Meffre (@0xdagger)
 Security researcher at Synacktiv
 Vulnerability research & Exploitation

 Synacktiv
 Offensive security company
 +170 ninjas
 We are hiring!

3 / 42

33Introduction

4 / 42

44Introduction

5 / 42

55WebKit

 Browser engine
 Developed by Apple
 Mainly used by Safari
 Initial release in 2005

 Ships everything to build a browser
 JavaScript engine
 DOM/rendering engine
 Web APIs
 User Interface API
 Etc.

6 / 42

66Architecture

 Initial architecture
 Single process
 Too much privileges

 Bad from a security point of view
 Compromise the process → Game Over

7 / 42

77Architecture

 WebKit2!
 Multi-process

 UIProcess
 Most privileged

 WebContent
 Less privileged…
 …still too much

8 / 42

88Architecture

9 / 42

99WebContent

 Most exposed process
 DOM rendering
 JavaScript engine
 Web APIs implementation

 Almost no privileges
 Hardened sandbox profile

 Can use sandbox extensions…
 ...require user permission

 WebKit processes expose a large surface

IOKit 0
Unix syscalls ~90
Mach traps ~30
MIG routines ~20
Userland services 0
WebKit process 3

10 / 42

1010NetworkProcess

 Network-related process
 Loading remote/local resources
 Web APIs implementation

 CacheAPI
 SharedWorker
 etc.

 Larger kernel and userland surface
 Few network-related syscalls
 Access to 1 IOKit
 Communicates with some services

11 / 42

1111GPUProcess

 Video and graphics processing
 Communicates with GPU (via ANGLE)
 Web APIs implementation

 WebGL
 WebGPU!

 Not reachable anymore
 Etc.

 Data parsing
 Font, WebRTC

 Almost same sandbox as WebContent
 Few IOKits and services

12 / 42

1212UIProcess

 Main Safari process
 Most privileged WebKit process

 Display on screen
 User interaction
 Process management
 User permissions management

 Camera
 Microphone
 etc.

 No specific sandbox

13 / 42

1313WebKit2

 WebKit processes are extensions¹
 Services before iOS 17.4

 Communicate through Mach messages
 UIProcess starts every WebKit process

1: https://developer.apple.com/documentation/extensionkit?language=objc

https://developer.apple.com/documentation/extensionkit?language=objc

14 / 42

1414WebKit2

 UIProcess allows WebContent to communicate with other
processes

15 / 42

1515WebKit2

 Processes have their own dedicated connection
 Messages are filtered based on connection type

16 / 42

1616WebKit2

 Message starts with a
mach_msg_header_t

 Followed by a message header
 Custom encoder/decoder

 Integer, string, floating number
 Memory entry, Objective-C

object

17 / 42

1717Objective-C decoding

 WebKit2 can send Objective-C objects
 Based on NSKeyedArchiver and NSKeyedUnarchiver

 Objects are serialized as BPlist

18 / 42

1818Objective-C decoding

 Very powerful
 Lots of objects can be encoded/decoded
 Supports cyclic decoding

 Historically lots of exploits abused the Objective-C deserializer¹²³
 Apple starts killing exploitation methods...

1: https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
2: https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
3: https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html

19 / 42

1919Objective-C decoding

 NSSecureCoding
 Must specify decoded type
 Raise exception if decoded object type != specified type
 Allows to decode subclasses of the specified type!

 If NSObject is in the allowed list → arbitrary deserialization!

20 / 42

2020Objective-C decoding

 Trust restrictions
 Applied to Platform Binary and Apple applications

 Raises an exception if NSObject is in the allowed list
 Collection classes must explicitly be in the allowed list

 NSArray
 NSSet
 etc.

 Disable many features of NSPredicate
 Disable cyclic decoding
 Decoding must use NSSecureCoding

 Can’t easily trigger arbitrary Objective-C deserialization
anymore

21 / 42

2121Objective-C decoding

 Strict mode
 Applied to WebKit processes

- (void)_enableStrictSecureDecodingMode;
 Even more restrictive than Secure Coding mode

 Can’t decode subclasses anymore
 Stops attacker from decoding some sensitive object fields

 Breaks some exploitations methods
 Very few Objective-C objects can still be decoded in WebKit

22 / 42

2222libPas

 WebKit has its own heap allocator
 “Libpas is a beast of a malloc, designed for speed, memory

efficiency, and type safety.”, Filip Pizlo
 Exposes API

 FastMalloc
 ISOHeap

 Still documented
 Few WebKit objects uses this API

 GigaCage, JITHeap
 Not relevant for this talk

23 / 42

2323libPas

 FastMalloc
 Based on Thread Local Cache
 Almost every WebKit object uses this API
 Sorts allocations based on their sizes
 Few security protections

 Good control over the heap

24 / 42

2424libPas

 Probabilistic Guard Malloc
 Tries to catch memory corruption bugs in the wild

 Adds guard pages and segregation
 1/1000 probability to have the feature enabled

 1 allocation every 4000-5000 is guarded
 Not a security hardening

25 / 42

2525libPas

 TZone
 Disabled by default! (for now...)
 Objects information is stored in Mach-O

section __tzone_descs
 Allocations are stored into buckets

 Based on their size and alignment
 AND a random seed

 Generated by the kernel
 Can’t predicate which objects share the

same buckets
 Tries to break heap-based exploit reliability

26 / 42

2626Default userland malloc

 Almost every process uses this heap allocator
 Historically hacker friendly¹

 iOS 17 introduced a little change...

1: https://www.synacktiv.com/ressources/Sthack_2018_Heapple_Pie.pdf

https://www.synacktiv.com/ressources/Sthack_2018_Heapple_Pie.pdf

27 / 42

2727Default userland malloc

 malloc() is replaced by malloc_type_malloc()
 Second parameter is a tag generated by the compiler
 Looks like a new hardened allocator, but…

 … malloc_type_malloc() still uses the old implementation
 The tag is never used (as of iOS 17.4)
 At least WebKit processes don’t use it

 Is typed malloc coming to userland?

28 / 42

2828PAC Bypass

 Need to bypass PAC again outside of WebContent
 WebContent has its own PAC keys

 Latest PAC bypasses targeted the DYLD loader¹²
 Very interesting target

 Lots of optimizations
 Has to sign pointers at runtime

 dlsym()
 Relocation

1: https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html
2: https://media.ccc.de/v/37c3-11859-operation_triangulation_what_you_get_when_attack_iphones_of_researchers

https://googleprojectzero.blogspot.com/2023/10/an-analysis-of-an-in-the-wild-ios-safari-sandbox-escape.html
https://media.ccc.de/v/37c3-11859-operation_triangulation_what_you_get_when_attack_iphones_of_researchers

29 / 42

2929PAC Bypass

 Structures used to keep information about loaded images
 Initially not protected

30 / 42

3030PAC Bypass

 Build fake Mach-O in memory
 dlsym() returns arbitrary signed pointers

31 / 42

3131PAC Bypass

 DYLD now protects its internal structures
 Structures are allocated in VM_PROT_READ pages
 Switches to VM_PROT_WRITE when it needs to write
 Switches back to VM_PROT_READ after writing

 Attackers can’t corrupt DYLD structures anymore…
 …but if attackers can call mprotect() they can change pages

protections
 Operation Triangulation did that

32 / 42

3232PAC Bypass

 DYLD pages are now
protected using SPRR
 Pages mapped with
VM_FLAGS_TPRO

 Protections
dynamically changed
by DYLD

 Operation
Triangulation PAC
bypass doesn’t work
anymore

33 / 42

3333PAC Bypass

 The GPU full chain exploits a race condition in dlsym()
 Corrupts the symbol name on the stack before it is used
 Sign arbitrary symbols

34 / 42

3434Execution context

 Can’t map RWX pages
 Only WebContent and few other processes

 Useful to have an execution context in the compromised process
 To pivot into the compromised process
 To implement the next stage

 Spawn a JavaScript engine!

35 / 42

3535Execution context

 JavaScriptCore exposes an Objective-C API
- (JSValue*)evaluateScript:(NSString*);

- (JSValue*)objectForKeyedSubscript:(id);

- (void)setObject:(id) forKeyedSubscript:(id);

 Corrupt JSValue inside the JavaScript engine
 Transfer primitives

 Apple doesn’t like this exploitation method...

36 / 42

3636Execution context

37 / 42

3737Execution context

 Can’t spawn JavaScript engine in the GPU process anymore
 Opcode list is trashed at process initialization
 VM::VM initialization is forbidden

 Or is it?

38 / 42

3838Execution context

 Checked in the VM constructor
 vmCreationDisallowed must be set to crash the process

VM::VM(VMType vmType, HeapType heapType, WTF::RunLoop* runLoop, bool* success)
// ...
 if (UNLIKELY(vmCreationShouldCrash || g_jscConfig.vmCreationDisallowed))
 CRASH_WITH_EXTRA_SECURITY_IMPLICATION_AND_INFO(/* ... */);

39 / 42

3939Execution context

 Developers forgot (or not?) to set vmCreationDisallowed

void GPU_SERVICE_INITIALIZER(xpc_connection_t connection, xpc_object_t initializerMessage)
{
 g_jscConfig.vmEntryDisallowed = true;
 g_wtfConfig.useSpecialAbortForExtraSecurityImplications = true;

 WTF::initializeMainThread();

40 / 42

4040Execution context

 Bypass JavaScript engine hardening
 PAC bypass is mandatory
 Restore each signed functions pointers in g_opcodeMap
 Profit!

 ézzézé
41 / 42

4141Conclusion

 Escaping the WebContent sandbox through WebKit processes
looks promising…
 … but increases full-chains complexity

 DYLD is a good PAC bypass target…
 … lots of PAC bypasses killed

 iOS has never had so many userland mitigations…
 … but in 2023 attackers were still able to build a full-chain from

WebContent :-)

42

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

