
Riding the lightning: iLO4&5 BMC security wrap-up

Fabien Perigaud, Alexandre Gazet & Joffrey Czarny
Geneva, March 21-22, 2019

Part I

Introduction

1

Baseboard Management Controller (BMC)

2

iLO hardware in a nutshell

• Embedded in most of HP servers for more than 10 years
• Chipset directly integrated on the server’s motherboard.

• This talk will cover iLO version 4 and iLO version 5 (released mid-2017)
• Impact HPE Gen8, Gen9 and Gen10 server lines
• Other BMCs: Dell’s Idrac, Lenovo’s IMM, Supermicro BMC, etc.

3

iLO hardware in a nutshell

Standalone system :

• Dedicated ARM processor: GLP/Sabine architecture
• Firmware stored on a NAND flash chip
• Dedicated RAM chip
• Dedicated network interface
• Full operating system and application image, running as soon as the server is powered.
• “Silicon root of trust”, aka secure boot (iLO5 only)

4

How it begins

During several years on pentest reports, we saw:
”Default credentials are still enabled on iLO, an attacker can reboot the server and boot it with
an external ISO in order to steal unencrypted information…”

— Big Four company, senior pentester

5

State of the art until 2016/2017

Summary of well known pentest tricks:

• IPMI Authentication Bypass via Cipher 0
• IPMI 2.0 RAKP Authentication Remote Password Hash Retrieval 1

Reference papers/publications:

• “IPMI: freight train to hell”, by Dan Farmer 2

• “A Penetration Tester’s Guide to IPMI and BMCs” 3

1http://fish2.com/ipmi/remote-pw-cracking.html
2http://fish2.com/ipmi/itrain.pdf
3https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/

6

http://fish2.com/ipmi/remote-pw-cracking.html
http://fish2.com/ipmi/itrain.pdf
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/

Teaming up

Unsatisfying

• Exposed iLO system discovered in most of our pentest engagements
• Rebooting server is noisy
• Could we reach the host from a compromised iLO?
• What is the attack surface from the host?

Deep dive evaluation

• Invest time to understand the system’s internals (200+ days):
• Detailed cartography of the exposed attack surface
• Multiple CVEs (compromise of iLO system from the host or administration side)
• Identify and exploit internal host DMA capabilities to pivot

• Tools we developped:
• Firmware extraction/analysis/backdooring scripts
• Light scriptable network scanner for engagements
• etc.

7

2018, tough year for BMCs

• Subverting your server through its BMC: the HPE iLO4 case, Joffrey Czarny, Alexandre Gazet &
Fabien Perigaud, RECON BX184

• The Unbearable Lightness of BMC’s, Matias Soler & Nico Waisman, BH185

• Remotely Attacking System Firmware, Jesse Michael, Mickey Shkatov & Oleksandr Bazhaniuk,
BH186

• Backdooring your server through its BMC: the HPE iLO4 case, Joffrey Czarny, Alexandre Gazet
& Fabien Perigaud, SSTIC 20187

• Turning your BMC into a revolving door, Joffrey Czarny, Alexandre Gazet & Fabien Perigaud,
ZeroNights 20188

BMC - Remote Attack surface

1

2

3

1

2

3

CPU

SRAM

FLASH

Buffalo overflow

R7 points to a https_connection object
R7+0xC points to a fixed-size buffer

struct https_connection {
...
0x0C: char connection [0x10];
...
0x28: char localConnection;
...

}

62

4https://recon.cx/2018/brussels/talks/subvert_server_bmc.html
5https://www.blackhat.com/us-18/briefings/schedule/index.html#the-unbearable-lightness-of-bmcs-10035
6https://www.blackhat.com/us-18/briefings/schedule/index.html#remotely-attacking-system-firmware-11588
7https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/
8https://2018.zeronights.ru/en/reports/turning-your-bmc-into-a-revolving-door/

8

https://recon.cx/2018/brussels/talks/subvert_server_bmc.html
https://www.blackhat.com/us-18/briefings/schedule/index.html#the-unbearable-lightness-of-bmcs-10035
https://www.blackhat.com/us-18/briefings/schedule/index.html#remotely-attacking-system-firmware-11588
https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/
https://2018.zeronights.ru/en/reports/turning-your-bmc-into-a-revolving-door/

Part II

Previous work: iLO4-to-Host and iLO4 backdooring

9

Outline

First steps on the system

Backdooring iLO4 firmware

Backdoor feature: iLO4 as host DMA proxy

Doing good with backdoor

10

Firmware update parsing

Reverse engineering of the firmware format

• Firmware update file format analysis
• Extraction of its components: bootloader, kernel, userland image, signatures, etc.
• Kernel Integrity analysis
• Understanding of the memory layout of the userland tasks (equivalent of processes)
• Loaders for IDA Pro

All the tooling is available on Airbus Github repository9!

-----------------[Sections List]-----------------
[...]
> 0x0000 - .dvi.elf.text at 0x009a3000, size 0x00035468 flags 0x1,0x0
> 0x0001 - .dvi.elf.data at 0x009d9000, size 0x0000077c flags 0x9,0x0
> 0x0002 - .libINTEGRITY.so.text at 0x009ea000, size 0x000047ec flags 0x1,0x0
> 0x0003 - .libINTEGRITY.so.data at 0x009ef000, size 0x00000014 flags 0x9,0x0
> 0x0004 - .libc.so.text at 0x009f0000, size 0x00033b84 flags 0x1,0x0
> 0x0005 - .libc.so.data at 0x00a24000, size 0x000007fc flags 0x9,0x0
> 0x0006 - .libc.so.bss at 0x00a25000, size 0x00002000 flags 0xc,0x0
[...]
9https://github.com/airbus-seclab/ilo4_toolbox 11

https://github.com/airbus-seclab/ilo4_toolbox

Attack surface analysis

49 userland tasks! Exposed endpoints:

• SSH server (mpSSH)
• WWW server
• iLO RESTful API, Redfish
• iLO virtual media port
• IPMI
• SNMP
• UPnP

Some components are full home-made
WWW and SSH servers FTW!

12

CVE-2017-12542

CVE-2017-12542

• CVSS base score 9.8
• Pre-authentication remote code execution on web server component
• Impacted version:

• HPE Integrated Lights-Out 4 (iLO 4) - Prior to v2.53

Typical attack scenario
An attacker with a foothold in a LAN or DMZ scans the network for exposed iLO4 web administration
service and attacks vulnerable ones. Once compromised, it is then possible to pivot and compromise
the host operating system as well, then to rebound to other hosts.

13

iLO4 Web server authentication bypass vulnerability

CVE-2017-12542

• A simple Buffer Overflow...
• Exploitable Pre-Auth...
• With a nice cup of AAAAAAAAAAAAAAAAAAAAAAAAAAAAA in the Connection header!

struct https_connection {
...
0x0C: char connection[0x10];
...
0x28: bool localConnection;
...
0xB8: void *vtable;

}

Allows a full authentication bypass but also Remote Code Execution!

14

How we can reach Host via BMC

While reversing the Channel Interface (CHIF) task, there were mentions of WHEA records parsing:
whea: invalid info from SMBIOS type_229 : offset=%X, size=%X
whea: found whea_info at %p
whea: NO $WHE found!
[...]
whea: sawbase access failed
[...]
whea : re-running whea HostRAM detect

• Range of host physical memory
• Mapped in a userland task virtual memory (R/W)

More details in the Airbus Github repository10

10https://github.com/airbus-seclab/ilo4_toolbox

15

https://github.com/airbus-seclab/ilo4_toolbox

DMA: let’s pwn the host

Our host runs an up-to-date Ubuntu Linux.

The plan:

• Dump the Linux kernel address space
• Do some recon to find interesting offsets
• Replace some unused functions with our shellcode
• Hijack the syscall table to redirect execution to our shellcode

DEMO

16

CVE-2018-7105

CVE-2018-7105

• CVSS base score 7.2
• Post-auth remote code execution through the SSH component
• Discovered and reported by Nicolas Iooss from the French National Cybersecurity Agency (ANSSI)
• Impacted version:

• HPE Integrated Lights-Out 5 (iLO 5) - Prior to v1.35
• HPE Integrated Lights-Out 4 (iLO 4) - Prior to v2.61
• HPE Integrated Lights-Out 3 (iLO 4) - Prior to v1.90

Typical attack scenario
An attacker with a foothold in a LAN or DMZ scans the network for exposed iLO SSH service. An
administrator account is needed. It can be obtained through the exploitation of IPMIv2 protocol
weakness (offline password hash brute-force).

17

Outline

First steps on the system

Backdooring iLO4 firmware

Backdoor feature: iLO4 as host DMA proxy

Doing good with backdoor

18

Backdooring iLO4

SPI service

• “SpiService” in the spi module
• Direct R/W primitives into the SPI flash

Attack

• Invoke the“SpiService” from a shellcode injected into the WWW server
• Direct overwrite of the firmware in the flash
• Bypass of the dynamic integrity check of the firmware

19

Backdoored firmware boot process

Methodology

• Full extraction of the
firmware update

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

20

Backdoored firmware boot process

Methodology

• Full extraction of the
firmware update

• Patch of the bootloader

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

20

Backdoored firmware boot process

Methodology

• Full extraction of the
firmware update

• Patch of the bootloader
• Patch of the kernel

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

20

Backdoored firmware boot process

Methodology

• Full extraction of the
firmware update

• Patch of the bootloader
• Patch of the kernel
• Addition of a backdoor
• Rebuild the firmware

update
• Flash of the firmware

iLO4

userland

kernel

bootloaderhardware reset

1.check integrity
2.decompress
3. load

1.check integrity
2.decompress
3. load

backdoor

20

Backdoor?

Custom handler in the WWW task

• GET handler
• Allows host memory read and write

$ wget -O dmp.bin 'https://192.168.42.78/backd00r.htm?act=dmp&hiaddr=0&loaddr=10000&count=10000'
2019-01-25 17:29:04 (1.15 MB/s) - ‘dmp.bin’ saved [65536]

$ xxd dmp.bin | head
00000000: 4d5a ea07 00c0 078c c88e d88e c08e d031 MZ.............1
00000010: e4fb fcbe 4000 ac20 c074 09b4 0ebb 0700@.. .t......
00000020: cd10 ebf2 31c0 cd16 cd19 eaf0 ff00 f0001...........
00000030: 0000 0000 0000 0000 0000 0000 8200 0000
00000040: 5573 6520 6120 626f 6f74 206c 6f61 6465 Use a boot loade
00000050: 722e 0d0a 0a52 656d 6f76 6520 6469 736b r....Remove disk
00000060: 2061 6e64 2070 7265 7373 2061 6e79 206b and press any k
00000070: 6579 2074 6f20 7265 626f 6f74 2e2e 2e0d ey to reboot....
00000080: 0a00 5045 0000 6486 0400 0000 0000 0000 ..PE..d.........
00000090: 0000 0100 0000 a000 0602 0b02 0214 1027'
[...]

21

Outline

First steps on the system

Backdooring iLO4 firmware

Backdoor feature: iLO4 as host DMA proxy

Doing good with backdoor

22

DMA: PCILeech weapon

PCILeech is a tool using either hardware or software memory acquisition devices to perform various
actions on a target’s physical memory, including inserting kernel modules and unlocking sessions.

We developed a TCP PCILeech connector 11

11https://github.com/Synacktiv/pcileech

23

https://github.com/Synacktiv/pcileech

DMA: PCILeech weapon

$ time ./pcileech kmdload -vvv -device rawtcp -device-addr 127.0.0.1 \
-device-port 8888 -kmd LINUX_X64_48

Current Action: Scanning for Linux kernel base
Access Mode: DMA (hardware only)
Progress: 748 / 268435422 (0%)
Speed: 6 MB/s
Address: 0x000000002FA00000
Pages read: 191488 / 68719468032 (0%)
Pages failed: 0 (0%)

Current Action: Verifying Linux kernel base
Access Mode: DMA (hardware only)
Progress: 32 / 32 (100%)
Speed: 1 MB/s
Address: 0x0000000031A00000
Pages read: 8192 / 8192 (100%)
Pages failed: 0 (0%)

KMD: Code inserted into the kernel - Waiting to receive execution.
KMD: Execution received - continuing ...
KMD: Successfully loaded at address: 0x76680000

real 2m38.038s
24

Outline

First steps on the system

Backdooring iLO4 firmware

Backdoor feature: iLO4 as host DMA proxy

Doing good with backdoor

25

Doing good with backdoor

Fun with friends: Adrien Guinet (Quarkslab, @adriengnt)

• NotPetya, variant of the Petya ransomware that appeared in June 2017 in Ukraine
• Rewrite the MBR of computers that are still using an old fashioned BIOS-based booting system.
• Rogue MBR encrypts the system partition
• Adrien’s previous work12: the encryption key stays in RAM after the encryption process and

ransomware triggered initial reboot

We can use our DMA access to recover the key and trigger the
ransomware’s decryption code!

12https://github.com/aguinet/petya2017_notes

26

https://github.com/aguinet/petya2017_notes

Recovering servers

27

Recovering servers

27

Community manager slide

Whitepaper and scripts

• Available on the ilo4_toolbox Github repository13

13https://github.com/airbus-seclab/ilo4_toolbox

28

https://github.com/airbus-seclab/ilo4_toolbox

Part III

Host to BMC

29

iLO architecture recap

This part applies on iLO4. Most of it should also be valid for iLO5, with slight changes. 30

Available tooling

Linux driver hpilo

• Exposes char devices to communicate with the iLO

• Permissions on /dev entries require root to access

HPE proprietary tools

• hponcfg: allows to get/set configuration parameters on iLO

• Firmware updates: include a flash_ilo4 binary

31

iLO from a Linux PoV

lspci
...
01:00.2 System peripheral: Hewlett-Packard Company Integrated
Lights-Out Standard Management Processor Support and Messaging (rev 05)
...

cat /proc/iomem | grep hpilo
fad60000-fad67fff : hpilo
fad70000-fad77fff : hpilo
fad80000-fadfffff : hpilo
fae00000-faefffff : hpilo
faff0000-faff00ff : hpilo

Channels are setup in shared memory

• One device per channel in /dev/hpilo/, 8 to 24 channels
• FIFO structure

32

CHIF: CHannel InterFace

chif is a task on iLO side

• Waits for messages from the host
• Dispatch to the correct command handler
• Can dispatch certain messages to other tasks

Quite simple message format

struct chif_command
{

int size;
short command_id;
short destination_id;
char data[];

};

By default, there is no authentication!

33

CHIF commands

100+ commands handled by CHIF module

• 0x01/0x02: Get/Set iLO Status
• 0x03/0x04: Get/Set Server Information
• 0x05/0x06: Get/Set Network Info
• etc.

Some dangerous ones...

• 0x70: Access iLO EEPROM: get access to default Administrator password
• 0x50/0x52: Flash command / Flash Data: install a new firmware
• 0x5a: Set User Account Data: create a new user (with administrator privileges)

34

CHIF command example

Access iLO EEPROM from Linux in 6 Python lines

>>> f=open("/dev/hpilo/d0ccb1", "wb+")
>>> data = "MFGDiag\x00" + pack("<L", 1)
>>> data += "\x00" * (0x8c - len(data))
>>> f.write(pack("<L2H", len(data)+8, 0x70, 0) + data)
>>> resp = f.read(4)
>>> resp += f.read(unpack_from("<L", resp)[0] - 4)
>>> print hexdump(resp)
0000 8c 00 00 00 70 80 00 00 00 00 00 00 01 00 00 00p...........
0010 43 5a 31 37 31 35 30 31 47 39 20 20 20 20 20 20 CZ171501G9
0020 00 00 00 00 00 00 00 00 02 00 00 00 ff ff ff ff
0030 ff ff ff ff 41 64 6d 69 6e 69 73 74 72 61 74 6fAdministrato
0040 72 00 00 00 00 00 00 00 00 00 00 00 47 xx xx xx r...........G***
0050 36 4e 4a 37 00 00 00 00 00 00 00 00 00 00 00 00 6NJ7............
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 61 2b ff ff ff ff ff ffa+......

35

Targeting firmware update

Firmware update

• Complex file format parsing
• Various signature checks
• A vulnerability might allow to install a backdoored firmware

Accessible from both the host and the web server

36

Firmware update workflow

Firmware update

• 1. New firmware sent
from the host or from
HTTP

37

Firmware update workflow

Firmware update

• 1. New firmware sent
from the host or from
HTTP

• 2. Firmware sent to fum
task

37

Firmware update workflow

Firmware update

• 1. New firmware sent
from the host or from
HTTP

• 2. Firmware sent to fum
task

• 3. fum validates file
format and signature

37

Firmware update workflow

Firmware update

• 1. New firmware sent
from the host or from
HTTP

• 2. Firmware sent to fum
task

• 3. fum validates file
format and signature

• 4. fum asks the kernel for
additional validations

37

Firmware update workflow

Firmware update

• 1. New firmware sent
from the host or from
HTTP

• 2. Firmware sent to fum
task

• 3. fum validates file
format and signature

• 4. fum asks the kernel for
additional validations

• 5. fum asks the spi
service to write the new
firmware on the SPI flash

37

Firmware format recap

38

fum verification steps

HP Signed File Fingerprint parsing

• Parsing line by line
• Retrieving Hash and Signature elements

Signature validation

• Compute hash of HPIMAGE block
• Check signature using hardcoded HPE public key

-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAteyCedpzasCIZeLkygK/GsUB29BY6wR0zcw/N5M/PitwnkNLn/yb
i7FKQIfoH7wRLzPSLWUORRKRy5OvfRwiw+6ezxlgjp/IvM75mI56KoanlyRw04FZ
mjfHKndMTCMaozBLUpIgfCr33NsAI4EcIG/edp7fgzUMr/T4xEOlyHxzCi0q70HP
BjuQ+CKrwbCPfvxOEA3vw+/fQqOf5RhZ+ihAKZyzcAzLVW0SI4gEvzm0L3uUolmM
lX/QAAWPA5fJfkGQAARS+I8pyb/sz9eaXb+JB/ukuGffwzPuqyKGcGilNIKsFKF4
8+QBYCutnDOFy7uekLLb9GUuKjWiDe8DOwIDAQAB
-----END RSA PUBLIC KEY-----

39

HPIMAGE format recap

Format

• Kernel and Userland are compressed and
signed

• Bootloader is uncompressed and unsigned
(ARM assembly)

Boot process

• Bootloader has code to load and verify
Kernel signature

• Kernel has code to load and verify Userland
signature

• Bootloader is never verified in the boot
process

40

Kernel verification steps

GKIMG kernel task

• Exposes the CONGKIMG resource to userland tasks
• Exposes 10 command handlers
• Verifies Kernel and Userland integrity through command 2

• Decrypt embedded signature
• Computes hash and compare to decrypted
• Tries to decompress if compressed

• Key used to verify signatures can be provided through command 1

41

Signatures verification recap

Signatures are checked in 3 steps:

• Whole HPIMAGE signature in fum task
• Userland and Kernel images signatures in GKIMG kernel task
• Kernel then Userland signatures during the boot process

On iLO4, the bootloader is not signed!

With a single userland vulnerability:

• A bad firmware can be written by asking the spi service directly
• The bootloader can be backdoored to avoid Kernel signature checking
• The Kernel can then be backdoored to avoid Userland signature checking
• A backdoor can then be inserted in a userland task

42

Parsing is hard (again)

HP Signed File Fingerprint parsing in fum

char line_local[1024];

while (1) {
if (!readline(dlobj, line_local)) /* HERE */

return 0xB;
if (!strcmp(line_local , "--=</End HP Signed File Fingerprint\\>=--"))

break;
key = split(line_local , ":");

if (!key) return 1;
if (!strcmp(key, "Hash"))

some_stuff();
else if (!strcmp(key, "Signature"))

some_other_stuff();
}

Call to readline() with a fixed-size local buffer, and no size specified?

43

The readline() function

As expected…

int readline(DOWNLOADER *dlobj, char *line_out)
{
char *ptr;
int line_size;

ptr = strtok(dlobj->buffer_read , "\r\n");
if (ptr)
{

line_size = ptr - dlobj->buffer_read;
if (line_out)
{

memcpy(line_out, dlobj->buffer_read, line_size); /* BAD */
line_out[line_size] = 0;

}
[...]

}

The full line is copied in the provided buffer, without any size check.

44

Exploitation

Without code execution?

• We could redirect code execution to bypass fum signature validation
• but the GKIMG check in the kernel will fail

With code execution!

• Security is a failure: no ASLR, no NX

• Shellcode can be written in the firmware file sent to the service, loaded at a fixed address in
memory!

• Shellcode content could be:
• Directly ask spi service to write the firmware on the SPI flash
• OR change the GKIMG key and let fum continue the process

45

Responsible Disclosure

Good news

• Reported to HPE PSRT on May 12th 2018
• Impacts iLO4 and iLO5
• Patches available:

• iLO4 2.60 released on May 30th 2018
• iLO5 1.30 released on Jun 26th 2018

• CVE-2018-7078, CVSS3 base score 7.2
• “Remote or Local Code Execution”
• See HPESBHF0384414

14https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03844en_us

46

https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03844en_us

Don’t worry, my iLO is disabled

47

Well…

48

Now what?

We already proved firmware backdooring to be possible

• Backdooring your server through its BMC: the HPE iLO4 case, Joffrey Czarny, Alexandre Gazet
& Fabien Perigaud, SSTIC 201815

• Add an endpoint in web server task allowing to install a memory-only backdoor in the host

Now we’re able to do it from the host!
• Even if iLO is disabled
• Persistent host backdoor hidden into iLO hardware

15https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/

49

https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/

Part IV

iLO5 discovery

50

Outline

Introduction

Firmware analysis

51

Our motivations with iLO5

Same core idea: evaluate the trust we can put in a solution/product

• Evolution of the exposed surface since iLO4

• Not a vulnerability research campaign
• Focus on game changer feature: silicon root of trust (secure boot)

52

Shopping cart with a new toy

HPE ProLiant ML110 Gen10

• Entry level server (not too expensive, 1500$)
• Compact form factor (tower)
• Gen10 means iLO5

• R.I.P MicroServer

53

Hardware reconnaissance

1

2 3

Key parts

1. H5TC4G63EFR: Skhynix 4Gb low power DDR3L Synchronous
DRAM

2. Macronix MX25L25635FMI-10G: NOR Memory IC 256Mb
(32Mx8) SPI 104MHz 16-SOP

3. Macronix MX25L51245GMI-10G: NOR Memory IC 512Mb
(64Mx8) SPI 104MHz 16-SOP

No luck with main SOC

• Cortex-A9

• Unknown secure-boot/cryptographic capabilities

Misc: board design by Wistron Corporation?

• Markings found in customs/export docs

54

Hardware reconnaissance

1

2 3

Key parts

1. H5TC4G63EFR: Skhynix 4Gb low power DDR3L Synchronous
DRAM

2. Macronix MX25L25635FMI-10G: NOR Memory IC 256Mb
(32Mx8) SPI 104MHz 16-SOP

3. Macronix MX25L51245GMI-10G: NOR Memory IC 512Mb
(64Mx8) SPI 104MHz 16-SOP

No luck with main SOC

• Cortex-A9

• Unknown secure-boot/cryptographic capabilities

Misc: board design by Wistron Corporation?

• Markings found in customs/export docs

54

Hardware reconnaissance

1

2 3

Key parts

1. H5TC4G63EFR: Skhynix 4Gb low power DDR3L Synchronous
DRAM

2. Macronix MX25L25635FMI-10G: NOR Memory IC 256Mb
(32Mx8) SPI 104MHz 16-SOP

3. Macronix MX25L51245GMI-10G: NOR Memory IC 512Mb
(64Mx8) SPI 104MHz 16-SOP

No luck with main SOC

• Cortex-A9

• Unknown secure-boot/cryptographic capabilities

Misc: board design by Wistron Corporation?

• Markings found in customs/export docs
54

Outline

Introduction

Firmware analysis

55

A new firmware format

• 32MB, wrapped in an HPIMAGE signed container
• It contains:

• A “bootblock” (last 0x10000 bytes)
• List of modules
• Two copies of each (redundancy/fault-tolerance)
• Each module is:

• Described by a header
• Signed (data and most of the header)

56

iLO5 module header (extract)

> module : iLO 5 Kernel 00.09.53
> fw_magic : 0x4edd411a
> header_type : 0x2
> type : 0xb
> flags : 0x5

[...]
> backward_crc_offset : 0x0
> forward_crc_offset : 0x853cf
> img_crc : 0x8dcf6c26
> compressed_size : 0x853cf
> decompressed_size : 0xd5180
> entry_point : 0xffffffff
> crypto_params_index : 0x2
> crypto_params_index_2 : 0x0
> header_crc : 0xb66e2ac6

[...]
> copyright: Copyright 2018 Hewlett Packard Enterprise Development , LP
> signature1: 0x200 bytes [3c 4f 4f 13 ed 6d e7 20 ...]
> signature2: 0x200 bytes [00 00 00 00 00 00 00 00 ...]

[...]
> fw_magic_end : 0x4edd4118

57

Firmware unpacked

[+] Modules summary (10)
0) Secure Micro Boot 1.01, type 0x03, size 0x00008000, crc 0xe88c2109
1) Secure Micro Boot 1.01, type 0x03, size 0x00004da8, crc 0x8ce8238c
2) neba9 0.9.7, type 0x01, size 0x000033a4, crc 0x464f22de
3) neb926 0.3, type 0x02, size 0x00000ad0, crc 0x4f73621c
4) neba9 0.9.7, type 0x01, size 0x000033a4, crc 0x464f22de
5) neb926 0.3, type 0x02, size 0x00000ad0, crc 0x4f73621c
6) iLO 5 Kernel 00.09.51, type 0x0b, size 0x000d5110, crc 0xcd6de878
7) iLO 5 Kernel 00.09.51, type 0x0b, size 0x000d5110, crc 0xcd6de878
8) 1.30.35, type 0x20, size 0x01a5707c, crc 0x069e2ba1
9) 1.30.35, type 0x22, size 0x0049f8b4, crc 0xc41682f7

58

Bootchain preview

iLO5 ASIC
(bootrom)

Secure Micro
Boot 1.01 neba9 0.9.7 iLO 5 Kernel

00.09.51
userland
1.30.35

Figure 1: iLO5 1.30 Jul 2018

59

Part V

Attacking secure boot

60

Outline

Root of trust

Cryptographic signature

Secure boot defeat

The epic tale of how we screw up

61

Bootblock and Secure Micro Boot

SecureMicroBoot padding paddingheader
SMB1

header
SMB0

1

2

0xFFFF8000 0xFFFF0000 0xFFFFFFFF0xFFFF5000

Our guess regarding the bootrom

• Init DDR memory
• Map firmware at 0xFE000000, bootblock is at 0xFFFF0000

• Verify signature from SMB0 header (data from 0xFFFF0000-0xFFFF8000, see 1)
• Verify signature from SMB1 header (data from 0xFFFF0000-0xFFFF5000, see 2)
• Trigger ARM reset vector 0xFFFF0000 62

Secure Micro Boot

Minimalistic first-stage bootloader

• Few CPU initialization operations:
• Instruction/data caches
• Configuration tweaking based on MIDR16

• TrustZone unused

• Seems to access some persistent memory mapped configuration
• Exposed API
• Load next bootloader

• neba9 0.9.7 (nominal behavior)
• neb926 (memory test?)

16ARM’s CPUID

63

Outline

Root of trust

Cryptographic signature

Secure boot defeat

The epic tale of how we screw up

64

Cryptographic material

• Up to 2 signatures, stored in the header
• RSASSA-PKCS1-V1_5 signature (same as iLO417)
• 4096-bit key
• Flat array of bignums in module’s data
• Exponent (0x10001) followed by 6 public keys

1 struct BIGNUM
2 {
3 unsigned short struct_size;
4 unsigned short index;
5 unsigned char type;
6 BIGNUM_DATA data;
7 };
8

9 struct BIGNUM_DATA
10 {
11 unsigned short nb_bytes;
12 unsigned char bits[bytes];
13 };

17see signature.rb

65

Down the bootchain: how SMB loads neba9

neba9
body

index1
index2

signature1

signature2

neba9
header

key1
key2
key3
key4
key5
key6

SecureMicroBoot

load key

decrypt hash 2

1

verify hash 3
66

Computing module hash

1 def mod_hash()
2 digest = Digest::SHA2.new(bitlen=512)
3

4 # read header
5 File.open('mod.hdr', 'rb'){|fd|
6 digest << fd.read(0x58)
7 fd.seek(0x4, IO::SEEK_CUR) # hum?
8 digest << fd.read(0xA4)
9 }

10

11 # read blob/body
12 File.open('mod.body', 'rb'){|fd|
13 digest << fd.read()
14 }
15

16 return digest.hexdigest
17 end

67

Computing module hash

index1
index2

signature1

signature2

module
header

0xA4 bytes

0x58 bytes

What does this mean?

• 4 bytes of the header not covered by the hash
value nor the CRCs

• Two fields: indexes of public keys
• Hypothesis: post/cross signature by two

different entities?

Is it exploitable?
Nopea :(
a(not yet)

68

Down the bootchain: how neba9 loads iLO5 kernel

iLO5 ASIC
(bootrom)

exposed API
0x60 syscalls

Secure Micro
Boot 1.01 neba9 0.9.7

iLO 5 Kernel
00.09.51

1

2

3

Delegated Security

1. neba9 calls the “dlopen” API, exposed by SMB, with kernel’s config
2. SMB performs the cryptographic checks then loads the kernel in memory
3. neba9 jumps to kernel’s entry point

69

Outline

Root of trust

Cryptographic signature

Secure boot defeat

The epic tale of how we screw up

70

So close

iLO5 ASIC
(bootrom)

Secure Micro
Boot 1.01 neba9 0.9.7 iLO 5 Kernel

00.09.51

OK OK OK

WHY??
iLO5 kernel

• Responsible for loading the userland (Integrity image)
• Almost the exact same code for loading module
• Trust only a single key to check signature18

• Remember the two index fields ?
18called “legacy” key, also used to sign iLO4 components

71

Broken logic in load_signature

1 steps_mask = 0;
2 if (load_legacy_key(hdr->index1, &pkey, 0x804))
3 {
4 steps_mask = 1;
5 if (decrypt_hash(hdr->sig1, &sig_size , hdr->sig1, sig_size , &pkey))
6 goto EXIT_FAILED;
7 }
8 if (!load_legacy_key(hdr->index2, &pkey, 0x804))
9 goto FUCK_YEAH; // <------ !!! NO FFS !!!

10 steps = steps_mask | 2;
11

12 if (decrypt_hash(hdr->sig2, &sig_size , hdr->sig2, sig_size , &pkey))
13 goto EXIT_FAILED;
14

15 if (steps == 2)
16 memcpy(hdr->sig1, sig2, sig_size); // only sig2, overwrite sig1
17

18 // two sigs ? ensure they match
19 if (steps == 3 && memcmp(img_hdr_ ->sig1, sig2, sig_size))
20 EXIT_FAILED:
21 return ERROR;
22 FUCK_YEAH:
23 return SUCCESS;

72

Boulevard of broken dreams

What happened?

• load_legacy_key expects 1 as index for public key. Fails otherwise
• load_signature returns with success code if load_legacy_key failed for index2

• Signatures fields are left untouched
• iLO5 kernel compares the hash value with sig1 field

Is it exploitable?

• Hell yeah!! :)

73

Saboteur cookbook

• Extract firmware, get iLO5 userland
• Decompress, insert backdoor, compress
• Set indexes 1 & 2 to rogue values
• Update sizes and CRCs
• Compute cryptographic hash of the whole
• Update sig1 field with hash value from above
• Use CVE-2018-7078 to push the firmware

Silicon root of trust and secure boot checkmate?

Figure 2: https://www.deviantart.com/imwithstoopid13/art/Grumpy-Cat-Nope-366369969

74

https://www.deviantart.com/imwithstoopid13/art/Grumpy-Cat-Nope-366369969

Saboteur cookbook

• Extract firmware, get iLO5 userland
• Decompress, insert backdoor, compress
• Set indexes 1 & 2 to rogue values
• Update sizes and CRCs
• Compute cryptographic hash of the whole
• Update sig1 field with hash value from above
• Use CVE-2018-7078 to push the firmware

Silicon root of trust and secure boot checkmate?

Figure 2: https://www.deviantart.com/imwithstoopid13/art/Grumpy-Cat-Nope-366369969

74

https://www.deviantart.com/imwithstoopid13/art/Grumpy-Cat-Nope-366369969

Outline

Root of trust

Cryptographic signature

Secure boot defeat

The epic tale of how we screw up

75

I love when a plan comes together

Situation

• Blinking motherboard
• iLO services are up (like SSH/WWW) but seems broken/unresponsive
• Can’t flash a new firmware ⇒ SNAFU

Need more information

• MicroServer had serial output ⇒ start probing pins with logic analyser
• More friends more fun, Trou & Phil, thx bros o/

76

I love when a plan comes together

Situation

• Blinking motherboard
• iLO services are up (like SSH/WWW) but seems broken/unresponsive
• Can’t flash a new firmware ⇒ SNAFU

Need more information

• MicroServer had serial output ⇒ start probing pins with logic analyser
• More friends more fun, Trou & Phil, thx bros o/

76

Software guys go hardware

77

Knock knock. Who’s there?

TX

GND

TX

GND

PMC

iLO

78

Probe them all

Figure 3: Serial and flash probing

79

Messing with iLO’s logs

Booting neba9 0.9.5 from fc00_0000
Copyright 2017 Hewlett Packard Enterprise Development , LP
NEBA9 Version 20161201162523
ASIC rev 0006013b MEMCFG=00093026
[...]
Kernel...INTEGRITY v11.2.4
BSP.................................iLO on the GXP A9 for 0006013b/20b
Debug Agent..Not Present
IP Address...unknown
RAM...226 MB
Active Cores...1
Initial Objects..224
Initializing boot modules:

Resource Manager...Success
[...]
ilomain: marker 52 @ 10.394519
Loading 1.17.06
Download File: main
Number Of Virtual AddressSpaces Downloaded 0x47
*** Task dvrspi.Initial encountered an exception

80

Long story short

We screw up

• Our backdoored userland is flawed
• Bad decompression code (a buffer was not properly initialized…)
• Induce a late error in the ELF parser of Integrity

• Kernel does not pop the recovery FTP server

We fixed it

• Flip one byte in the NOR flash to cause the kernel to enter into recovery mode
• Push a legitimate firmware through the opened FTP access
• Fix our decompression algorithm
• Btw a talented friend tipped us it was actually regular LZ77, thx bro o/

• Actually no need to re-compress userland (enough room)

81

Long story short

We screw up

• Our backdoored userland is flawed
• Bad decompression code (a buffer was not properly initialized…)
• Induce a late error in the ELF parser of Integrity

• Kernel does not pop the recovery FTP server

We fixed it

• Flip one byte in the NOR flash to cause the kernel to enter into recovery mode
• Push a legitimate firmware through the opened FTP access
• Fix our decompression algorithm
• Btw a talented friend tipped us it was actually regular LZ77, thx bro o/

• Actually no need to re-compress userland (enough room)

81

Secure boot defeated

Figure 4: Cat and reversers happy

Demo: backdoored SSH

82

Responsible Disclosure

Good news

• Reported to HPE PSRT on Sept 3rd 2018
• iLO5 1.37 released on Oct 26th 2018
• CVE-2018-7113, CVSS3 base score 6.4
• “Local Bypass of Security Restrictions in Firmware Update”
• See HPESBHF0389419

19https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03894en_us

83

https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03894en_us

When the root of trust is compromied

Kernel logic fixed with iLO5 1.37, but:

• First and second stage bootloaders unchanged
• Legitimately signed, vulnerable, kernels are in the wild
• iLO allows firmware downgrade!
• ⇒ How do they handle revocation of these?

Attack scenario

• Attackers build “Frankenstein” firmware with old, vulnerable kernel modules
• Attack vectors:

• Physical: supply chain attacks
• Logical: downgrade chained with a vulnerability in userland (SPI flash access)

84

Partial answer from HPE

Anti-downgrade feature introduced with iLO5 version 1.39 (Dec 2018)

• “Added Downgrade Policy setting to Security -> Access Settings page.”
• Software fix in the update code (check on the versions)
• Feature enabled through the administration interface
• No interface to disable it once enabled
• Status stored in EEPROM?

Limited

• Attack vectors remain open:
• Physical: supply chain attacks/physical access to the flash
• Logical: vulnerability in userland (reuse SPI flash service)

85

Part VI

Conclusion

86

Wrapping it all

Multiple vulnerabilities

• CVE-2017-12542 - Pre-authentication remote code execution on WWW component
• CVE-2018-7078 - Remote code execution through the firmware update component

• From the host: pre-auth
• From the WWW component: post-auth

• CVE-2018-7105 - Post-auth remote code execution through the SSH component
• CVE-2018-7113 - iLO5 broken secure boot

Discovered and exploited

• DMA access from iLO chip to the host memory
• Attacker can establish a bi-directional communication with the host

87

iLO4 killchain from LAN network

Administration domain

Production domain

IPMIv2 password
bruteforce

YN

Exploit
CVE-2017-12542

iLO version
< 2.53 ?

/xmldata
endpoint banner grabbing

network
reconnaissance

Attacker's LAN foothold

Disable IPMI
over LAN

Update to
last version

(2.61)

Disable
endpoint

88

iLO4 killchain from prod network

Administration domain

Production domain

Administration domain

Production domain

Update to
last version

(2.61)

Attacker's foothold
compromised exposed service

YN

Exploit
CVE-2018-7078

iLO4 version
< 2.60 ?

89

iLO5 killchain from prod network

Administration domain

Production domain

Administration domain

Production domain

Update to
last version

(1.37)

Attacker's foothold
compromised exposed service

YN

Exploit
CVE-2018-7078

iLO5 version
< 1.30 ?

YN

Default security
mode?

High security
mode or higher

90

iLO4 systems takeaways

Large attack surface

• Exposed on both the administration and production sides
• Unpatched systems: dreamland for lateral movement
• Network isolation/segregation is a must have, but not enough
• Keep these assets up to date and monitor them carefully

Simple hardening

• Disable IPMI over LAN (Administration/Access Settings)
• Disable xmldata (Administration/Management/Insight Management Integration)

91

iLO5 systems takeaways

Lots of new features

• IPMI over LAN disabled by default
• Security modes
• HTML5 remote console
• etc.

The system design is basically the same as iLO4

• Integrity operating system (updated to v11.2.4)
• Still no system hardening/defense in depth (ASLR/NX)
• We can expect more vulnerabilities20

20See also CVE-2018-7117, https://www.atredis.com/blog/2019/3/8/cve-2018-7117-a-somewhat-accidental-xss-in-hpe-ilo

92

https://www.atredis.com/blog/2019/3/8/cve-2018-7117-a-somewhat-accidental-xss-in-hpe-ilo

iLO5 systems takeaways

Silicon root of trust/secure boot

• Clearly a step in the right direction21

• Preventing long term compromise
• But totally hindered by flawed implementation
• What about the revocation?

21see Google/Titan, Apple/T2, etc.

93

Conclusion for redteamers

• BMC systems often found unpatched, loosely monitored
• Open attack path to otherwise secure systems
• Persistence even in case of system resinstallation

• We published an extensive available toolkit for iLO4 & iLO5:
• compromise
• backdoor
• pivot

• Great exercises to play with your blue team:
• Cover monitoring blind spot
• Incentive to patch
• Raise awareness on BMCs
• etc.

94

Closing words

We’d like to thank

• HPE PSRT team and Mark, Scott
• Xavier, Trou, Phil for their help and ideas
• Adrien Guinet (@adriengnt)
• Our Airbus/Synacktiv/Medallia teams for their proof-readings and remarks

Our tools/PoC/talks

• https://github.com/airbus-seclab/ilo4_toolbox

95

KTHXBYE

Thanks for you attention

Questions?
To contact us:

fabien [dot] perigaud [at] synacktiv [dot] com - @0xf4b
alexandre [dot] gazet [at] airbus [dot] com

snorky [at] insomnihack [dot] net - @_Sn0rkY

96

	Introduction
	Previous work: iLO4-to-Host and iLO4 backdooring
	First steps on the system
	Backdooring iLO4 firmware
	Backdoor feature: iLO4 as host DMA proxy
	Doing good with backdoor

	Host to BMC
	iLO5 discovery
	Introduction
	Firmware analysis

	Attacking secure boot
	Root of trust
	Cryptographic signature
	Secure boot defeat
	The epic tale of how we screw up

	Conclusion

