
Date 20/11/2019

At C&ESAR 2019

By Jean-Christophe Delaunay

IOMMU and DMA attacks

2 / 38

Whoami

 Jean-Christophe Delaunay

 @Fist0urs on Twitter

 Working for Synacktiv:
 Offensive security company
 >50 ninjas
 3 poles: pentest, reverse engineering, development

 In reverse engineering team (formerly in pentest):
 25 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!

3 / 38

Whoami2

 Jérémie Boutoille

 @tlk___ on Twitter

 Also in RE team...
 ...is sorry not to be here

Introduction

5 / 38

Disclaimer

 State of the art of current known attacks will be
addressed on Intel technology only

 Attacks will rely on PCI BUS only

 Presentation will stay “high-level”, please refer to the
paper for more details

 Targeting a stolen laptop or backdooring the “evil maid”
way – Computer is considered already switched on.

 Many IOMMUs have been harmed during tests

6 / 38

Direct Memory Access (DMA)

 (over)simplified functioning

7 / 38

Technologies

 PCI

 FireWire

 PCI
Express

 AGP

 etc.

[1] [2]

[3]

[4] [6][5]

8 / 38

Intel VT-d – IOMMU

 “Virtualization Technology for Directed I/O”(VT-d)

 Proceeds to DMA remapping to restrict accesses to some
memory locations

 DMA remapping works as a classical MMU (“IO-MMU”)
through multiple layers of page tables

 Mapping by pages of 4KB, 2MB or 1GB

 Addresses manipulated by peripherals may be seen as
virtual addresses translated to physical

9 / 38

Intel VT-d – IOMMU

 Peripherals are organized by “domains”

 Each domain has its proper MMU configuration

 All peripherals within a single domain share the same
memory mapping

 Each peripheral is identified by the triplet “bus:dev:fun”

 Domain may be deduced from this triplet

10 / 38

Intel VT-d – IOMMU

 Hypervisor usecase:
 a peripheral is shared with a virtual machine
 must ensure that this peripheral may only reach virtual

machine’s address space

 OS usecase:
 IOMMU can be used to protect OS/kernel from rogue

peripherals
 must ensure that peripherals can only access their address

spaces

Implementation

12 / 38

Windows

 IOMMU is used as a security mechanism by some
technologies :
 Hyper-V
 Virtualization Based Security (VBS)

 According to Microsoft, IOMMU is used to protect the OS
from DMA attacks[7] starting with Windows 10 1809

 Very few documentation regarding IOMMU actual
implementation (as opposed to *NIX-based and macOS
systems)

1 at least until Windows 10 1803

1

13 / 38

Linux

 IOMMU not activated by default (boot argument “intel_iommu=on”)

 Each IOMMU type defines a structure “iommu_ops” which serves as
an abstraction layer while interacting with hardware

 A virtual address as seen by a peripheral (“iova”) is associated with a
physical address (“paddr”) with corresponding read/write rights

 Mapping is achieved per domain and not peripheral

 Each peripheral has its own domain each peripheral has its own
address space

2 many platforms are supported by Linux’s IOMMU implementation

2

14 / 38

Linux

15 / 38

macOS

 Apple understood many years ago the security concerns
regarding IOMMU

 UEFI is involved in the IOMMU configuring process

 Not open source so a reverse engineering work was
started in order to understand this part

 First results emphasize that the implementation follows
Intel’s recommendations

16 / 38

macOS – reverse engineering

 IOMMU is activated at boot time within UEFI

 Custom UEFI protocol permitting drivers to configure
IOMMU’s mappings for peripherals

 When UEFI hands off to the OS, the “IOPCIFamily” driver
reinitializes the IOMMU so that it can be used in the new
execution context

3 https://opensource.apple.com/source/IOPCIFamily/IOPCIFamily-330.250.10/

3

17 / 38

macOS

 This driver declares the “AppleVTDDeviceMapper” class
which overrides the “IOMapper” class

 This class redefines the “iovmMapMemory” and
“iovmUnmapMemory” APIs which permit to add and
remove memory mappings within the IOMMU

 Unlike Linux, macOS uses a single domain for all
peripherals

Attacks

19 / 38

The basics

 Goal: unlock session (or
obtain code execution
permitting so)

 Hardware:
 FPGA Spartan-6 FPGA

SP605[10] + FTDI ft601[11] USB
3.0 extension…

 ...or PCIe Screamer R02[12]
 Whatever adaptor permitting to

connect to the PCI BUS

SP605 + ft601

20 / 38

The basics

 Software:
 Linux or Windows

 pcileech by Ulf Frisk (@UlfFrisk)

 … + signatures

 HOWTO:
 connect to the PCI BUS (ExpressCard, Thunderbolt, etc.)

 probe main memory with pcileech, searching for logon session unlocking routine
(signatures)

 Patch password’s checking routine in memory with pcileech

 Log in whatever password is entered[9]

4 https://github.com/ufrisk/pcileech

4

21 / 38

Windows – attack

 Context: without VBS no IOMMU by default

 Identify “MsvpPasswordValidate”, from “NtlmShared.dll” , in memory[13]

6 prior to Windows 10, this API was located in “msv1_0.dll”

6

5

5 with VBS activated, the attack would require to reboot the workstation

22 / 38

Windows – attack

23 / 38

Windows – attack

NtlmShared.dll - 10.0.18362.1 ; Windows 10 ; x64 ;
7e034cc4e80106cda064c21176333534ea949837e8dc2f11333d937814125de6

73A,C60F84,73E,FBFFFF32C0E9,73B,909090909090B001

24 / 38

Windows – attack

NtlmShared.dll - 10.0.18362.1 ; Windows 10 ; x64 ;
7e034cc4e80106cda064c21176333534ea949837e8dc2f11333d937814125de6

73A,C60F84,73E,FBFFFF32C0E9,73B,909090909090B001

25 / 38

Linux – attack

 Context: no IOMMU by default

 Attack follows the same scheme as for Windows:

 Patch password’s checking routine (“verify_pwd_hash” from “pam_unix.so”)

 Log in whatever password is entered

pam_unix-ubuntu-18.04.1-x64.so ; x64 ; a7473bdb2e8a939ee380d003a578b1893d499f9a943de3369d933daf75b11dec
0EF,4189C44585E40F85,0,-,0EF,31C0904531E4909090909090

26 / 38

macOS – context

 IOMMU enabled by default

 Must find a way to circumvent IOMMU protection

 Colin Rothwell[14] found some vulnerabilities during his PhD
thesis[15]

 Along with other researchers, he released “Thunderclap”[16]
[17], a platform dedicated to DMA attacks

 Vulnerabilities patched with macOS 10.12.4

7 IOMMU could be disabled prior to macOS High Sierra by rebooting in recovery mode. In this case pcileech can be used

7

27 / 38

macOS – principle

 Peripherals are under the same domain share
the same address space

 Possible to access network card’s memory pages
 Exploit this behavior to be able to execute

commands as root

8 before macOS 10.12.4

8

28 / 38

macOS – attack

 Network packets are described by an “mbuf” structure

9 mbuf structs can be chained in order to obtain payloads of arbitrary sizes

9

29 / 38

macOS – attack

 Data can be stored in multiple ways:

 m_dat (M_dat.M_databuf) and
m_pktdat(M_dat.MH.MH_dat.MH_databuf)

 External buffer m_ext (M_dat.MH.MH_dat.MH_ext)

30 / 38

macOS – attack

 The way data is stored depends on the m_flags value from the
m_buf header (m_hdr)

31 / 38

macOS – attack

 m_ext is evaluated when M_EXT flag is set
 Because an external buffer is allocated to store the

data, it must be freed when it is no longer needed
 The function in charge of freeing the buffer is stored

in the m_ext structure...

32 / 38

macOS – attack

 … as a function pointer

33 / 38

macOS – attack

 We can modify this function pointer through DMA
 We also control its parameters as they are members of the

m_ext struct:
 ext_buff
 ext_size
 ext_arg

 This function pointer will be called when the buffer is freed
 We override this pointer with KUNCExecute API

10 KUNCExecute permits to launch a binary as root in the userland

10

34 / 38

macOS – patch

 m_ext.ext_free and m_ext.ext_refflags are now obfuscated
with random values which are set during boot process

 The attack is no longer feasible without knowing the
values of these random masks

Conclusion

36 / 38

So what?

 DMA attack vectors are more and more discussed and are still valid
 As expected, macOS is ahead of its contestants regarding hardware

security...
 ...nevertheless, Windows seems to take the physical attack vector

seriously
 If there is few documentation regarding IOMMU software implementation,

there is little to no information regarding the hardware side
 If you don’t trust your IOMMU then fulldisk encryption + passphrase will

always be a good alternative
 We plan to go further than the current state of the art during our RAPID’s

project “DMArvest”

Do you have any
questions?

THANK YOU FOR YOUR ATTENTION,

38 / 38

Bibliography

[1] https://graphicscardhub.com/wp-content/uploads/2017/01/Generic-ATI-Rage-XL-8MB-PCI-VGA-Video-Card.jpg
[2] https://c.pxhere.com/photos/5b/47/pc_agp_video_card-1387029.jpg!d
[3] https://www.touslescables.com/im/pr/1095G.jpg
[4] https://tech4gamers.com/wp-content/uploads/2018/08/NVIDIA-GeForce-GTX-2080-Founders-Edition-Dual-Fan.jpg
[5] https://static.macway.com/images/p/g/originalid_915000/300/915352/zoom/915352_7fdad14.jpg
[6] http://img.igen.fr/2015/6/macgpic-1433421562-12011488884021-sc-op.jpg
[7] https://github.com/dwizzzle/Presentations/blob/master/Bluehat%20Shanghai%20-%20Advancing%20Windows
%20Security.pdf
[8] https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
[9] https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.html
[10] https://www.xilinx.com/products/boards-and-kits/ek-s6-sp605-g.html
[11] https://www.ftdichip.com/Products/ICs/FT600.html
[12] https://shop.lambdaconcept.com/home/32-pciescreamerR02.html
[13] https://conference.hitb.org/hitbsecconf2010ams/materials/D2T2%20-%20Devine%20&%20Aumaitre%20-
%20Subverting%20Windows%207%20x64%20Kernel%20with%20DMA%20Attacks.pdf
[14] http://colinrothwell.net/
[15] http://colinrothwell.net/thesis.pdf
[16] http://thunderclap.io/
[17] http://thunderclap.io/thunderclap-paper-ndss2019.pdf

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38

