

When frontdoors become backdoors

Presented the 02/07/2016 For NDH 2016 By Sébastien Dudek

About me

- Company: Synacktiv
- Interests: radio-communications (Wi-Fi, RFID, GSM, PLC...), networking, web, Linux security... and intercoms!
- Do Red Team tests!

Red team tests at Synacktiv

And can get spotted sometimes...

Our story with intercoms

Synacktiv's team got bigger

 \rightarrow moved to another place

The new place got new toys

 \rightarrow access control systems,

alarms, and a **digital intercom...**

This kind of intercom...

Features:

- Pass code
- Vigik
- Call a resident on his phone

When calling a resident, this intercoms use the mobile network \rightarrow that explains the (+33)6 prefix displayed on the resident's phone

Human curiosity...

Would it be possible to play with the intercom?

We tried to directly call the intercom

but the intercom doesn't answer to the call

Dump and modify the flash

good option, but difficult to do without being spotted in the street...

■ A mobile attack → Better!

but we need to understand the functioning of these intercoms first!

Summary

Introduction

- Context
- Wiring topology
- Leaders in the French market
- Cheaper alternatives
- Other variants
- State Of The Art
- Short basics on GSM, GPRS, 3G, and 4G...
- Analysis of Intercoms
- Conclusion & further work

Context

- Intercom / door phone / house intercom
- A voice communication device → within a building
- Numeric
 → Connected to the mobile network (SIM/USIM cards)
- Allows to call a resident to identify the visitor and open a door

Different types of intercoms exist

Conventional intercoms

Used for medium-sized buildings

Has 4+n wires:

- Power (2 wires)
- door system (2 wires)
- n → number of residents

Simplified intercoms

One pair replaces the 4 conventional wires

The other wires are for each resident

Like conventional intercoms...

Numeric intercoms

No wire for each resident

Wires replaced by:

- GSM, 3G, rarely in 4G
- or a TCP/IP stack
- or Wi-Fi...

⇒ Avoid complicated and cumbersome cables
 ⇒ Easy installation

Numeric intercoms: simplified architecture

Leaders in the French market

- 4 brands are strongly present in France:
 - Intratone
 - Norasly
 - Urmet Captiv
 - Comelit

How to recognize a mobile intercom

Not easy... maybe spotting a nice LCD screen, new stainless steel case...

• Or...

Looks like a mobile module?

The 3G module of Intratone

Documentation is public: http://www.intratone.fr/media/

The interesting part of the documentation:

« Lorsque le réseau 3G est inexistant sur les lieux de l'installation, le bloc 3G cherchera le réseau GSM automatiquement et pourra résumer ses fonctionnalités dans ce mode : - Appel Audio (sans Visio).

- Mise à jour en temps réel sur le réseau GSM et non plus 3G. »

Cheaper alternatives

- GSM Activate by a UK company
- Other devices without name
- Linkcom → commonly used by private residents
 - and already seen in two building in the 15th district of Paris
 - \rightarrow Our choice for analysis

Other variants of wireless intercoms

Other variants exist:

- Wi-Fi
- DECT (Digital Enhanced Cordless Telecommunications)
- other unsecure radio protocols
- and so on.

⇒ We will only focus on intercoms that use the mobile network

Summary

Introduction

State Of The Art

- Intercoms
- Mobile security in the hacking community
- Existing tools
- Short basics on GSM, GPRS, 3G, and 4G...
- Analysis of Intercoms
- Conclusion & further work

State Of the Art: intercoms

- Publications about intercoms are nearly nonexistent
- But research on mobile security can be applied to attack these devices...

State Of the Art: Mobile security

Many publications exist:

- Attacks on GSM A5/1 algorithm with rainbow tables
 - (at 26c3, Chris Paget and Karsten Nohl)
- OsmocomBB
 - (at 2010 at 27c3, Harald Welte and Steve Markgraf)

Hacking the Vodaphone femtocell

(at BlackHat 2011, Ravishankar Borgaonkar, Nico Golde, and Kevin Redon)

An analysis of basebands security

(at SSTIC 2014, Benoit Michau)

Attacks on privacy and availability of 4G

(In October 2015, Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valtteri Niemi and Jean-Pierre Seifert)

How to not break LTE crypto

(at SSTIC 2016, Christophe Devine and Benoit Michau)

And many others...

State Of the Art: tools

Hardware

- USRP from 700 € (without daughter-boards and antennas)
- SysmoBTS from 2,000 €
- BladeRF from 370 € (without antennas)

Software

- Setup a mobile network
 - OpenBTS: GSM and GPRS network compatible with USRP and BladeRF
 - OpenUMTS: UMTS network compatible with some USRP
 - OpenLTE: LTE network compatible with BladeRF and USRP
 - OpenAir: LTE network compatible with some USRP
 - YateBTS: GSM and GPRS network compatible with USRP and BladeRF
- Analyze traffic
 - libmich: Analyze and craft mobile packets captured with GSMTAP
 - Wireshark: Analyze GSMTAP captured packets
 - OsmocomBB: sniff and capture GSM packets

Summary

- Introduction
- State Of The Art

Short basics on GSM, GPRS, 3G, and 4G...

- GSM and GPRS authentication and confidentiality
- Mobile handover
- Differences between GSM and GPRS and possible attacks
- 3G and 4G advantages
- Signal attraction...
- Analysis of Intercoms
- Conclusion & further work

GSM and GPRS: authentication

IGITAL SECURITY

GSM and GPRS: Handover

A stronger signal will likely attract User Equipments \rightarrow Useful for attackers

GSM and GPRS: possible attacks

- No mutual authentication → Fake rogue BTS
- Reuse of Authentication triplet RAND, RES, K_c many times
- Signaling channel not encrypted → open for attacks
- Attacks on the A5/1 algorithm
- and so on.

⇒ Interception is possible on GSM and GPRS

3G/4G: advantages

	GSM	3G	4G		
Client authentication	YES	YES	YES		
Network authentication	NO	Only if USIM is used (not SIM)	YES		
Signaling integrity	NO	YES	YES		
Encryption	A5/1	KASUMI SNOW-3G	SNOW-3G AES ZUC		

Mobile interception: signal attraction

A User Equipment connects to the closest Base Station

3G/4G downgrades to 2G via

- jamming attacks → a simple Gaussian noise in targeted channels
- protocol attacks \rightarrow difficult
- baseband strange behaviors

Jamming is generally basic...

Before

After

Downgrade $3G \rightarrow 2G$ demo

- Targeted channel jamming
- Using a simple HackRF for ~300€

Summary

- Introduction
- State Of The Art
- Short basics on GSM, GPRS, 3G, and 4G...

Analysis of Intercoms

- Tests environment
- Passive attacks
- Active attacks → control it and make money out of it!
- Conclusion & further work

- 1 BladeRF = 370 € minimum
- 2 Antennas = 15 € minimum each
- YateBTS software = FREE
- Total cost = 400 €

Intercom setup: hardware part

- For the beginning → Link iDP GSM for ~300€
- Can be powered in AC as in DC

Intercom setup: configuration

This intercom can be configured in 3 ways:

- With a programming interface and the Link iDP manager software
- With a SIM card reader/programmer
- Via SMS messages
- The SIM card is used as a memory → contains all the settings
- A first administrator number "ADMIN1" has to be setup in the SIM card contacts

First impressions

Our goals:

- impersonate a number, or find a way to bypass it
- then open a door, or send commands to the intercoms

• • • •

■ A good indicator → after sending commands, an acknowledgment is performed by SMS

Hypotheses as a potential attacker

- We don't know the mobile operator
- We don't know intercom's number
- The commands could be found with public or leaked documentations, or by performing a firmware analysis

Attacker steps

- **1.** Recognize intercom's operator to trap it
- **2.** Leak, or guess, numbers to impersonate
- 3. Configure the rogue base station → associate the attacker IMSI (International Mobile Subscriber Identity) to a resident number
- 4. Open the door!
- **5.** And manage it with an "admin" number?

Passive attack: Monitoring

CCCH (Common Control Channels) gives a lot of information

- Management messages, sometimes SMS in clear, TMSIs (Temporary Mobile Subscriber Identity),...
- CCCH → paging request → can be exploited to locate someone → our target?
- Tools: OsmocomBB, Airprobe, and so on.

Capture a specific channel (1)

List of ARFCN (Absolute Radio Frequency Channel Number)

Osmocom	3B# show	cell 1							
ARFCN	MCC	MNC	LAC	cell ID	forb.LA	prio	min-db	max-pwr	rx-lev
	+	+	+	+	+	+	+	++	+
1	208	01	0x	0xe	n/a	n/a	-110	5	-71
3	208	01	0x	0xb	n/a	n/a	-110	5	-76
7	208	01	0x	0xa	n/a	n/a	-110	5	-74
11	208	01	0x	0xe	n/a	n/a	-110	5	-75
77	208	10	0x	0x9	no	normal	-105	5	-84
513DCS	208	01	0x	0xd	n/a	n/a	- 95	0	-82
518DCS	208	01	0x	0x5	n/a	n/a	- 95	0	-79
609DCS	208	01	0x	0xf	n/a	n/a	- 95	0	-70
744DCS	208	10	0x	0xe	n/a	n/a	- 95	0	-91
976	208	20	0x	0xc	n/a	n/a	-104	5	-81
978	208	20	0x	0xc	n/a	n/a	-104	5	-79
979	208	20	0x	0X0	n/a	n/a	-104	5	-84
982	208	20	0x	0xc	n/a	n/a	-104	5	-74
984	208	20	0x	0xc	n/a	n/a	-104	5	- 57
986	n/a	n/a	n/	n/a	n/a	n/a	n/a	n/a	n/a
1011	208	20	0x	0x9	n/a	n/a	-104	5	-87
1012	208	20	0x	0xb	n/a	n/a	-104	5	-84

Capture a specific channel (2)

Leaked TMSI with ccch_scan OsmocomBB tool:

<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(353	1
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(116	θ
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(324	5
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(331	4
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(138	6
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(893)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(131)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(596)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(324	5
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(287)

⇒ Use SMS Class-0 messages to track a user

Problem \Rightarrow paging requests to the intercoms are mostly rare + we will need more phone to monitor all cells =/ \rightarrow what about active attacks?

Active attacks

A User Equipment decides to register to another base station if

 it can register to any Mobile country code (MCC)/Mobile Network Codes (MNC) BTS close to it

=> For example with Orange in France : MCC = "208" and MNC = "01"

- it can register to any network close to it
- only the current used network isn't reachable anymore, even if a rogue base station is closer
- the signal is strong and the mutual authentication succeeded (not the case in GSM/GPRS)
- Everything depends on the mobile stack implementations...

Trap the intercom

- Bruteforcing the 4 MCC/MNC
 - 15min~ waiting for each MCC/MNC
- Strong GSM signal
- Button push → calling intercepted → success!

<u>Note</u>: The used MCC/MNC but mostly the used channel can be discovered with jamming tests over the different channels.

■ Activate GSM tapping on YateBTS → Wireshark

84933 406.0349243 127.0.0.1	127.0.0.1	LAPDm	81 I, N(R)=1, N(S)=0(DTAP) (CC) Setup
84935 406.0384471 127.0.0.1	127.0.0.1	LAPDm	81 S, func=RR, N(R)=1
84947 406.0571079 127.0.0.1	127.0.0.1	LAPDm	81 I, N(R)=1, N(S)=1(DTAP) (CC) Call Proceeding
84955 406.0582432 127.0.0.1	127.0.0.1	LAPDm	81 U, TUNC=UI
84906 400.0760920 127.0.0.1	127.0.0.1	LAPUM	81 U, TUNC=UI
GSM Frame Number: 0			
Channel Type: FACCH/F (9)			
- Antenna Number: 0			
Sub-Slot: 0			
□ LINK ACCESS Procedure, Channel Dm (LAPDm)			
Control field: T N(P)-1 N(S)-0 (0x20)			
\oplus Length Eield: 0x49			
GSM A-I/F DTAP - Setup			
Protocol Discriminator: Call Control; c	all related SS messag	es (3)	
0011 = Protocol discriminator:	Call Control; call rei	Lated SS messages	(0x03)
… 0 = TI flag: allocated by se	nder		
01 = Sequence number: 1			
	ype: Setup (0x05)	version 4 and bal	f rate encode version 1. MC bas a greater proference
Called Party BCD Number - (515)	ast full fate speech	version 1 and nai	r race speech version 1. MS has a greater preference
E-called Party Bob Rumber - (1913)			
Length: 6			
1 = Extension: No Extension			
	(0×00)		
0001 = Numbering plan identific	ation: ISDN/Telephony	Numbering (ITU-T	Rec. E.164 / ITU-T Rec. E.163) (0x01)
Called Party BCD Number: 515			
	8 00 45 00	E.	
0010 00 43 T/ 40 40 00 40 11 45 5a /T 00 0	0 01 /T 00 .C.Mg.g.	EZ	
	0 02 45 04	.D	
	5 f5 2h	+	
0050 2b	+		
	C / N		

DIGITAL SECURI

What's next? Let's open the door!

Before updating a number \rightarrow find an admin number:

- leaked with calling buttons, or alarms
- if not \rightarrow use your social engineering tricks
- Once found → affect this number to your IMSI in tmsidata.conf

```
[tmsi]
last=007b0005
[ues]
20820XXXXXXX=007b0003,35547XXXXXXXX,XXXXX
515,1460XXXXX,ybts/TMSI007b0003
# associating attacker IMSI with a resident number
[...]
```


What's next? Let's backdoor it!

Find commands:

- public or leaked documentations
- Passive channel monitoring \rightarrow good luck!
- or buy the same model in commercial web sites such "leboncoin", eBay, and so on.

In our case with Linkcom iDP:

Command	Description
READ <name></name>	Read the number of a button, or an admin (ADMIN[1-9]).
WRITE <name> <number></number></name>	Add or update a number associated to a name.
CAL AT <command suffix=""/>	Send an AT command to the baseband through SMS!

AT commands?

We can interact with Intercom's baseband:

- retrieve SMS messages → AT+CMGL="ALL"
- spying building door conversations with autoanswer feature (if not disabled) $\rightarrow ATS0=1$
- and so on.

Call premium rate numbers

■ We can modify a contact → why not choose a premium number?

- Allopass
- Optelo
- Hipay
- and so on.

Demo

- Trapping an intercom
- Sending commands

Conclusion & further work

- Intercoms using the mobile network are vulnerable to the same flaws as mobile phones
- Other devices in the IoT ecosystem use the mobile network (e.g: Orange MyPlug)
- Further work:
 - include a semi-automatic 3G jammer
 - study 3G and 4G protocol downgrades
 - attack other intercoms

ANY QUESTIONS?

