
Date 16th of February 2019

At OffensiveCon 2019

By Eloi Benoist-Vanderbeken

macOS

How to gain root with CVE-2018-4193 in < 10s

2 / 105

Whoami

 Eloi Benoist-Vanderbeken

 @elvanderb on twitter

 Working for Synacktiv:
 Offensive security company
 50 ninjas
 3 poles: pentest, reverse engineering, development

 Reverse engineering team coordinator:
 21 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!

Introduction

4 / 105

CVE-2018-4193

 Vulnerability in WindowServer
 Userland macOS root service
 “WindowServer is a system daemon that provides various UI services such as window management, content

compositing, and event routing”
 Fixed in macOS 10.13.5

 Discovered by ret2 Systems
 And at least 2 other pwn2own 2018 teams
 https://twitter.com/_niklasb/status/1004342074114760704

 Used in a pwn2own 2018 chain
 ~90s to spawn a root shell
 Unfortunately pwn2own only allows 3 attempts and their exploit worked the 4 th time

 Full chain described in an excellent blog post series
 https://blog.ret2.io/2018/06/05/pwn2own-2018-exploit-development/

 In the last one, they offered a Binary Ninja Commercial License for an exploit
 Using only CVE-2018-4193
 Achieving WindowServer code exec in < 10s
 Without crashing it
 With a 90+% reliability

 Challenge accepted :)

https://twitter.com/_niklasb/status/1004342074114760704
https://blog.ret2.io/2018/06/05/pwn2own-2018-exploit-development/

5 / 105

The bug

 Very simple bug
 Found via in-process dumb fuzzing

 Attacker controlled signed index used without lower bound

heap array

array[0] [1] [2] [3] [4] [5] [6]

24 bytes

7 elements

6 / 105

The bug

 Very simple bug
 Found via in-process dumb fuzzing

 Attacker controlled signed index used without lower bound

heap array

array[0] [1] [2] [3] [4] [5] [6]

SLPSRegisterForKeyOnConnection(connection_id, NULL, 3, 1);

7 / 105

The bug

 Very simple bug
 Found via in-process dumb fuzzing

 Attacker controlled signed index used without lower bound

heap array

array[0] [1] [2] [3] [4] [5] [6]

SLPSRegisterForKeyOnConnection(connection_id, NULL, 10, 1);

[10]

8 / 105

The bug

 Very simple bug
 Found via in-process dumb fuzzing

 Attacker controlled signed index used without lower bound

heap array

array[0] [1] [2] [3] [4] [5] [6]

SLPSRegisterForKeyOnConnection(connection_id, NULL, -10, 1);

[-10]

9 / 105

So what can we do?

heap array

array[0] [1] [2] [3] [4] [5] [6]

0x400 NULL

[-10]

0 4 8 0xC 0x10 0x14 0x18

SLPSRegisterForKeyOnConnection(connection_id, NULL, -10, 1);

XXX XXXXXX

10 / 105

So what can we do?

heap array

array[0] [1] [2] [3] [4] [5] [6]

XXX 0x400 NULL XXX XXX

[-10]

0 4 8 0xC 0x10 0x14 0x18

XXX 0x400 0x00007f989140bb40 0x0000950b XXX

0 4 8 0xC 0x10 0x14 0x18

SLPSRegisterForKeyOnConnection(connection_id, NULL, -10, 1);

11 / 105

So what can we do?

heap array

array[0] [1] [2] [3] [4] [5] [6][-10]

XXX 0x400 0x00007f989140bb40 0x0000950b XXX

0 4 8 0xC 0x10 0x14 0x18

Unknown

0x70 bytes

mach port name of the connection
unknown value

12 / 105

A little digression… 1/3

 What’s a mach port name?
 ID used to identify a port right in a name space
 Actually an index (24bits) and a gencount (8bits)

mach_port_name = (index << 8) | gencount

 The gencount is changed (+4) each time an index is reused

3, 7, 11, …, 247, 251, 3, 7, ...

Ease the detection of unintentional port reuse
 The name space mach port name table grows when needed

16, 32, 64, …, PAGE_MAX_SIZE*8, PAGE_MAX_SIZE*16, PAGE_MAX_SIZE*24, etc.

 Used to be 100% deterministic
 Easy to predict mach_task_self() value
 Easy to spray mach port names in the victim name space and to hardcode an attacker

controlled mach port name
 Easy to reuse port names

Just reallocate them 64 times to make the gencount wrap

See Brandon Azad blanket exploit

13 / 105

A little digression… 2/3

 Since iOS 11, Apple decided to fix this

 Name space freelist is “randomized”
 First entry of the new table is always at the beginning of the free list
 Next, entries are randomly added from the beginning or the end of the

table

Exactly like the kernel heap
 The first 8 entries are not yet randomized for compatibility reason

mach_task_self() is still equal to 0x103 :)

 Gencount is “““randomized”””
 Still initialized with 3
 Still incremented by 4
 BUT randomly cycle after 16, 32, 48 or 64 generations

Instead of 64 before…

14 / 105

A little digression… 3/3

 So…

 mach_task_self is still always equal to 0x103
 For the moment…

 It is still possible to spray mach port names and guess
there values
 Just have to use all the freelist
 gencount always starts with 3

 Only problem is for mach port name reuse
 We don’t know how many time we need to reuse the port to get the

same gencount
 But, if we have an oracle, we can just repeatedly try to reallocate it

until it is reused

15 / 105

Recap

 +++
 We can overwrite a NULL pointer with a pointer in the

heap
 We can overwrite a DWORD with a mach port name

 ---
 Pointer must be previously NULL
 Pointer must be prefixed by a 0x400 DWORD
 We don’t know the mach port name (nor the pointer)

values

16 / 105

Ret2 Systems exploit

 Leak the mach port name and pointer values by overwriting a string
object

 Use the mach port name to overwrite a pointer and gain code
execution
 Actually a lot more complicated, read their blog post :)

 Complicated because of the mach port
 Last 2 bits are always set → Obj-C tagged pointer

Not interesting from an exploitation point of view

Cannot directly overwrite Obj-C pointers
 Mach ports values are low

Remember, they are incremental indexes

 Depending on the heap start address… you might need to spray a lot
 Worst case scenario: 4GB
 OK but can be very slow

Exploit strategy

18 / 105

Exploit strategy

 Why not using the pointer value?
 Instead of the mach port name

 Idea:
 Step 1: Overwrite a NULL optional pointer with our unknown heap

pointer
 Step 2: Free the associated object
 Step 3: Reuse the allocation with controlled data
 Step 4: Trigger the use of the overwritten pointer to gain arbitrary

code execution
 Step 5: Execute our payload and ensure continuation of execution

 Easy!

19 / 105

Exploit strategy

???
0x400

Optional pointer
NULL

???
XXX

20 / 105

Exploit strategy

???
0x400

Overwritten pointer
0x00007f989140bb40

???
0x0000950b

Unknown object

21 / 105

Exploit strategy

???
0x400

Overwritten pointer
0x00007f989140bb40

???
0x0000950b

freed object

22 / 105

Exploit strategy

???
0x400

Overwritten pointer
0x00007f989140bb40

???
0x0000950b

Reused alloc

41 41 41 41 41 41 41 41
…
…
…
…

41 41 41 41 41 41 41 41

23 / 105

Exploit strategy

???
0x400

Overwritten pointer
0x00007f989140bb40

???
0x0000950b

Reused alloc

41 41 41 41 41 41 41 41
…
…
…
…

41 41 41 41 41 41 41 41

24 / 105

Exploit strategy

???
0x400

Overwritten pointer
0x00007f989140bb40

???
0x0000950b

Reused alloc

41 41 41 41 41 41 41 41
…
…
…
…

41 41 41 41 41 41 41 41

RIP = 0x4141414141414141

25 / 105

Exploit strategy

???
0x400

Overwritten pointer
0x00007f989140bb40

???
0x0000950b

Reused alloc

41 41 41 41 41 41 41 41
…
…
…
…

41 41 41 41 41 41 41 41

RIP = 0x4141414141414141

Step 1

Overwrite a NULL optional pointer with
our unknown heap pointer

27 / 105

Tools

 WindowServer gives us a powerful primitive

 SLSSetConnectionProperty:
 Can be used on any connection, no privilege required
 Arbitrary property name
 Property value are Obj-C values deserialized from the user input
 We can read, modify and delete properties

 Objects are deserialized via CFPropertyListCreateWithData
 From the doc:

CFPropertyListRef can be any of the property list objects: CFData, CFString,
CFArray, CFDictionary, CFDate, CFBoolean, and CFNumber.

 Convenient way to:
 Massage the heap
 Read back modified properties
 Place arbitrary data in memory

28 / 105

Problem

 We need to have the following shape:
 0x400 | NULL | DWORD

 Where DWORD can be safely overwritten with a mach port name
 Where the NULL pointer, once overwritten, will be used

 We can allocate arbitrary
 CFData

 CFString

 CFArray

 CFDate

 CFBoolean

 CFNumber

 CFDictionary

29 / 105

Let see what we can do… 1/2

 CFData and CFString can be used to leak
 Put \x00\x04\x00\x00\x00\x00\x00\x00\x00\x00 in the string/data to get

the pre-condition
 Read it back after triggering the vulnerability
 Used by ret2 to get mach port name and pointer values
 Cannot be used to get code exec…

 CFArray cannot be used
 “NULL” Obj-C pointers aren’t actually NULL but are the singleton kCFNull

And kCFNull is not serializable anyway…

 Pre-condition cannot be met

 CFDate, CFBoolean and CFNumber are useless
 CFNumber are limited in size, 128bits max
 CFDate are just doubles
 CFBoolean are singleton

30 / 105

Let see what we can do… 2/2

 CFDictionary

 Use a hash table…
 Hash tables contain NULL pointers
 During hash table destruction all non NULL pointers will be released!

 Win?
 We need to overwrite two pointers

Value without key → crash (NULL deref)

Key without value → pointer is unused

 We still need to put a 0x400 before the NULL pointer
 Is it safe to rewrite the DWORD after the pointer with a mach port name?

 We need to go deeper…
 Let’s reverse CoreFoundation code!

31 / 105

CFPropertyListCreateWithData

 Accepts 3 different formats

 Tries successively to decode
 Binary format (bplist0 header)
 XML
 Old plist format (Json-like)

 Let’s study/reverse all the implementations!
 CoreFoundation is (kinda, no updates for 4 years) open

source
 XML and old format are not really interesting
 Binary format however…

32 / 105

CFBinaryPlistCreateObjectFiltered

 Binary format supports more objects than the others
 CFKeyedArchiverUID

 CFNull

 CFSet

 CFNull and CFSet are only supported when deserializing!
 We need to forge our own serialized objects
 Fortunately for us it’s not that complicated…

 CFSet gives code exec with a single overwritten pointer!
 Same hash table structure than CFDictionnary
 But obviously with only values and no keys

 We still need to put a 0x400 before our NULL pointer…

33 / 105

Battle plan

Values
Hash table

CFSet

Unused slot
NULL

???
0x400

???
XXX

34 / 105

CoreFoundation internals

 Some objects are stored directly in their reference
 The reference isn’t a pointer anymore but directly the value

Obviously only work for small values
 Saves some memory and CPU cycles

 To identify those objects, their lowest significant bit is set
 Because heap pointers are always 16 bytes aligned

 The next three lowest significant bits encode the type
 NSAtom→0, CFString→2, CFNumber→3, NSIndexPath→4,
NSDate→6

 Warning: tagged types are lazy initialized

WindowServer only use CFString, CFNumber and NSAtom

We can also force it to use NSDate by deserializing dates but not the others

35 / 105

CFNumber and CFString

0x1122334455667737
Class

CFNumber
Type
QWORD

Value
0x11223344556677

0x4142434445464775
Class

CFString
Length

7
Value

“GFEDCBA”

36 / 105

Battle plan

CFSet

Values
Hash table

CFNumber
0x400 XXXXXX 37

CFSet

Unused slot
NULL

???
XXX

37 / 105

How do we place our values?

 CFSet is a generic construction and can be used with any type

 Callbacks must be passed during CFSet creation
 hash, equal, release, retain

 kCFTypeSetCallBacks are the built-in callbacks for CFTypes
 hash → CFHash
 equal → CFEqual
 retain/release → wrappers around CFRetain/CFRelease

 CFHash is deterministic!
 We can precisely place our CFIntegers in the hash table
 We just change the less significant bits of the CFInteger until it is correctly placed in the

hash table

 We can put (almost) arbitrary QWORDs in CFDictionary and CFSet hash
tables
 Only lowest significant bytes are not 100% controlled
 Not a problem as we only need to control the 32 highest bits

38 / 105

Battle plan

CFSet

Values
Hash table

CFNumber
0x400 000000 37

CFSet

Unused slot
NULL

???
XXX

39 / 105

Battle plan

CFSet

Values
Hash table

CFNumber
0x400 000001 37

CFSet

Unused slot
NULL

???
XXX

40 / 105

Battle plan

CFSet

Values
Hash table CFNumber

0x400 000002 37

CFSet

Unused slot
NULL

???
XXX

41 / 105

Battle plan

CFSet

Values
Hash table

CFNumber
0x400 000003 37

CFSet

Unused slot
NULL

???
XXX

42 / 105

What about the mach port name?

 But what about the mach port name?
 We will have an unknown pointer in our hash table

 It will be considered as a tag pointer
 XXX3 → Invalid tagged type
 XXX7 → NSNumber
 XXXB → Invalid tagged type
 XXXF → Invalid tagged type

 Fortunately for us:
 CFRelease just do nothing if a pointer is tagged!
 Regardless of the (valid or invalid) type

43 / 105

Battle plan

CFSet

Values
Hash table

CFNumber
0x400 000003 37

CFSet

Unused slot
NULL

CFNumber
0x400 000018 37

Unused slot
NULL

CFNumber
0x400 000007 37

Unused slot
NULL

Unused slot
NULL

CFNumber
0x400 000040 37

44 / 105

Battle plan

CFSet

Values
Hash table

CFNumber
0x400 000003 37

CFSet

Unknown object
0x00007f989140bb40

Tagged pointer
0x400 0000950b

Unused slot
NULL

CFNumber
0x400 000007 37

Unused slot
NULL

Unused slot
NULL

Unknown object

CFNumber
0x400 000040 37

45 / 105

What if the lowest bit wasn’t set?

 Allocations size in the heap are multiples of 0x10
 Even 0x200 for “small” allocation (> 0x400)

 Hash tables elements counts are prime numbers
 3, 7, 13, 23, 41, 71, 127, 191, etc.

 There is at least 8 unused bytes at the end of every hash
table
 It is always safe to overwrite them

 We could just place our 0x400 in the penultimate slot of the
hash table
 Overwritten pointer will be the last
 Mach port name will be outside the hash map…
 …but still in the dedicated allocation → win

46 / 105

Mallocated memory

Alternative battle plan

CFSet

Values
Hash table

CFNumber
0x400 000003 37

CFSet

Unused slot
NULL

47 / 105

Mallocated memory

Alternative battle plan

CFSet

Values
Hash table

CFNumber
0x400 000003 37

CFSet

Unknown object
0x00007f989140bb40

Port name
0x0000950b

Unknown object

48 / 105

Last problem

 We can only specify a negative index

 And the array is global and early allocated
 No way to allocate controlled data before it

 Fortunately, base of the heap is just before the stack…
 See mvm_aslr_init in libmalloc

 …and grows backward 256MiB per 256MiB
 See mvm_allocate_pages_securely in libmalloc

 So if we allocate enough CFSet, they will be accessible
with a negative offset!
 We can do this in one operation by assigning a big CFArray of
CFSet to a given property name

49 / 105

Battle plan

stack

heap

50 / 105

Battle plan

stack

heap

51 / 105

Battle plan

stack

heap

52 / 105

Battle plan

stack

heap

53 / 105

Battle plan

stack

heap

Step 2

Free the associated object

55 / 105

Freeing the object

 Nothing really interesting there
 Just reverse WindowServer and find how to free the object

 Turns out that the 0x70 bytes object represents an
application
 It is possible to allocate multiple applications per connection

 Wasn’t that easy…
 Not that easy to free an application without killing the whole

connection
 A lot of boring reverse is not included in this presentation :)

 WindowServer is very complex
 There might be other exploitable vulnerabilities…
 …but I can only use CVE-2018-4193

56 / 105

Battle plan

stack

heap

57 / 105

Battle plan

stack

heap

Step 3

Reuse the allocation with controlled data

59 / 105

CoreFoundation internals

 Our overwritten pointer will be considered as a pointer on a CoreFoundation object
 Same than an Objective-C object
 See nemo Phrack article

Modern Objective-C Exploitation Techniques

http://www.phrack.org/issues/69/9.html

 We need to control the first QWORD of the allocation
 The ISA pointer
 Obviously not possible with Objective-C / CoreFoundation objects

Because they start with there own ISA pointer

 CFArrays containers are inline allocated
 They are immutable

 CFSet hash tables are not!
 We can forge our object in a CFSet hash table with CFNumbers!
 Application object is 0x70 bytes wide
 A CFSet with 7 to 11 elements will have a hash table of 13 elements = 0x68 bytes

See __CFBasicHashTableCapacities and __CFBasicHashTableSizes in CFBasicHash.c

http://www.phrack.org/issues/69/9.html

60 / 105

Mallocated memory
0x70 Bytes

Battle plan

CFSet

Values
Hash table
13 elements 0x68 Bytes⇒

CFNumber / Fake ISA
0x?????????????? 37

CFSet

...

...

61 / 105

Plan

 Massage the heap
 Create holes for the application object
 Create holes just a little smaller to make sure our holes

won’t be “stolen” by other allocations

 Create our application
 With some luck, it’ll be located in one of our holes

 Trigger the vulnerability

 Free the application object

 Reuse the allocation with our forged CFSet hash
table

62 / 105

Problem…

 CoreFoundation uses the default heap
 As all the “normal” C/C++ allocations (malloc/new)

 The default heap uses separate magazine per core
 Optimize the processor caches accesses
 Reduce the risk of concurrent access (less locks)

 This is problematic:
 If our object was allocated by a core, the reallocation must be done by the same core
 We need to massage all the magazines

 More info about the default heap in “Heapple Pie: The macOS/iOS
default heap”
 Presented in 2018 at Sthack

https://www.sthack.fr/
 Slides are available

https://www.synacktiv.com/ressources/Sthack_2018_Heapple_Pie.pdf

https://www.sthack.fr/
https://www.synacktiv.com/ressources/Sthack_2018_Heapple_Pie.pdf

63 / 105

Massaging the heap - first idea

 CFSet saved the day already twice… why not a third one?

 Let’s forge a serialized CFSet with duplicated keys

 When a CFSet is deserialized
 all the objects are first deserialized
 then they are put in a new CFSet

 Only one of the duplicated key should be kept
 Others should be freed
 This should punch holes in the heap!

 But duplicated objects are actually never freed…
 CFSet is supposed to be correctly serialized
 Reference counting is therefore disabled during CFSet creation

CFBasicHashSuppressRC called in __CFSetCreateTransfer

 It saves a CFRetain during the insertion and a CFRelease after

 Memory leak!

64 / 105

Massaging the heap - second idea

 Just use properties
 Create a lot of properties
 Free some to create holes

 Create some applications between allocations
 Seems to help WindowServer to switch from a core to

another one…
 Maybe because of asynchronous operations…

It just works
 Helps to massage all the magazines

 This is where a heap viewer comes in handy :)

65 / 105

Heap viewer

Step 4

Trigger the use of the overwritten pointer
to gain arbitrary code execution

67 / 105

Getting code exec

 Triggering the use of our overwritten pointer:
 We just have to redefine / delete the property associated with our

overwritten CFSet

 This will call CFRelease with our overwritten pointer

 But how do we get arbitrary code exec?
 By forging a fake Objective-C object and a fake Objective-C Class
 Multiple dereferences are involved before getting RIP

Object → ISA pointer → Class → cache → function pointer

 How are we going to bypass ASLR?
 For code: easy, system libs are loaded at the same address for all

processes thanks to the shared cache

Not exactly true anymore on iOS12 but that’s an other story
 For data?

68 / 105

Bypassing ASLR

 We could leak the reused object address
 Like ret2 Systems did

 But the object is quite small…
 Hard to fit everything in it…

 macOS/iOS ASLR is known to be weak
 phoenhex.re exploit for CVE-2017-2536 – 32GB of spray

WebKit heap – possible due to page compression
 Brandon Azad exploit for CVE-2018-4331 – 4 GB of spray

mach_vm_map – via libxpc
 @S0rryMybad exploit for CVE-2019-6225 – unknown size

Kernel heap

 Not that uncommon to hardcode addresses…

69 / 105

How does the ASLR work?

 Default heap is randomized in userland
 See mvm_aslr_init and mvm_allocate_pages_securely in
libmalloc

 Random is provided by the kernel at startup
Via applev special environment variables

 Heap start address = min stack addr - random - 256MiB
 x86_64: 16bits of random, 8MiB step 512GiB spray needed⇒
 aarch64: 7 bits, 32MiB step 4GiB spray needed⇒
 Others: 3bits, 8MiB step 64MiB spray needed⇒

But other mitigations are used for those architectures

First n blocks are dismissed for each regions

 Not practical…

70 / 105

How does the ASLR work?

 The main executable base address is randomized
 If it has a __PAGEZERO segment

vmaddr = filesize = 0

initprot = maxprot = VM_PROT_NONE

vmsize ≠ 0

Name isn’t actually important
 A random slide, aslr_page_offset, is added to the original base address
 Different for each architecture

0 to 80/20 MiB on aarch64 16K/4K

0 to 256 MiB on x86_64

0 to 1 MiB on x86

 The same slide is also directly used to randomize the stack base
address
 leak of the stack leak of the main executable address⇔

 See load_machfile in bsd/kern/mach_loader.c for more
information

71 / 105

How does the ASLR work?

 /usr/bin/dyld is loaded after the main executable
 If it doesn’t have a base address

Always the case on macOS and iOS

Otherwise it is loaded like the main executable

 A new random slide, dyld_aslr_page_offset, is added to
the end of the executable address to get dyld base address

 Different for each architecture
0 to 4 MiB on aarch64

0 to 256 MiB on x86_64

0 to 1 MiB on x86

 Again, see load_machfile in
bsd/kern/mach_loader.c for more details

72 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
0x100000000

aslr_page_offset
0 to 256 MiB

dyld_aslr_page_offset
0 to 256 MiB

dyld max address
0x100000000 + sizeof(WindowServer) + sizeof(dyld) + 512MiB

≈ 0x120100000

73 / 105

How does the ASLR work?

 Pages allocated without a specific address are allocated just after the main
executable
 vm_map_raise_min_offset is used to block all allocations before the __PAGEZERO

segment when it is “loaded”
see load_segment in bsd/kern/mach_loader.c

 Unless posix_spawn is used with the undocumented flag
_POSIX_SPAWN_HIGH_BITS_ASLR…
 Only valid on x86_64
 start_address = (random() & 0xFF) << 27

 Only impact vm_map_enter
 Used by WebKit XPC services

com.apple.WebKit.WebContent[.Development] and com.apple.WebKit.Plugin

activated by the undocumented XPCService→_HighBitsASLR key in the service Info.plist

 If we allocate 512+ MiB via mach_vm APIs in the distant process, we
completely bypass the ASLR
 Even 256 MiB if you are not afraid to collide with dyld

74 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)

aslr_page_offset
0 to 256 MiB

dyld_aslr_page_offset
0 to 256 MiB

mach_vm_allocate(0x1000)

mach_vm_allocate(0x3000)

dyld max address
≈ 0x120100000

75 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)

aslr_page_offset
0 to 256 MiB

dyld_aslr_page_offset
0 to 256 MiB

mach_vm_allocate(0x1000)

mach_vm_allocate(0x3000)

mach_vm_allocate(0x1000)

mach_vm_allocate(0x1000)

mach_vm_allocate(0x1000)

dyld max address
≈ 0x120100000

76 / 105

0x414141414141...

0x414141414141...

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)

aslr_page_offset
0 to 256 MiB

dyld_aslr_page_offset
0 to 256 MiB

mach_vm_allocate(0x1000)

mach_vm_allocate(0x3000)

mach_vm_allocate(0x1000)

mach_vm_allocate(0x1000)

mach_vm_allocate(0x1000)

0x414141414141...

0x12010000
0

77 / 105

mach_msg

 WindowServer is an old service
 Not a fancy XPC or NSXPC service
 Good old MIG server

 Unbonded arrays are passed as out-of-line descriptors
 Size must fit in a DWORD (< 4GiB)
 No other restrictions
 Arrays are freed just after the execution of the MIG handler

 For large arrays (2 pages), XNU use copy-on-write mechanisms≳

 Almost no physical memory is used

Except for the page table

 First free large-enough pages of the map are used (see vm_map_copyout)

Those just after the executable :)

Even if _POSIX_SPAWN_HIGH_BITS_ASLR is used

 Very fast, even more if the memory is deallocated from the sender (no COW
needed)

78 / 105

Strategy

 Create a LOT of contiguous pages starting with a fake Obj-C classes
 Reserve 4GiB of virtual memory
 Allocate a page in it and put our fake Obj-C class with our payload
 Remap the page 0xFFFFF times to create a 4GiB contiguous buffer
 This will use very few physical pages

One for the payload, few others for the page table

 Call SetConnectionProperty to replace the overwritten property
with the 4 GiB buffer
 The buffer will be copied in WindowServer
 One of the copies of our fake Obj-C is now guaranteed to be located at

0x200000000

 Our fake class is used during the overwritten CFSet destruction
 Our payload is executed…

 The service automatically free the sent buffer

79 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)

Allocated memory

dyld max address
≈ 0x120100000

exploit

/usr/bin/dyld

0x200000000

80 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)

dyld max address
≈ 0x120100000

exploit

/usr/bin/dyld

Reserved memory
4GiB

Allocated memory

0x200000000

81 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)

dyld max address
≈ 0x120100000

exploit

/usr/bin/dyld

fake class + payload

Allocated memory

0x200000000

82 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)

dyld max address
≈ 0x120100000

exploit

/usr/bin/dyld

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

remapped
pages 0x200000000

Allocated memory

83 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)exploit

/usr/bin/dyld

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

COW

Allocated memory

0x200000000

84 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)exploit

/usr/bin/dyld

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

fake class + payload

Allocated memory

0x200000000

85 / 105

Battle plan

WindowServer

/usr/bin/dyld

WindowServer original base address
(0x100000000)exploit

/usr/bin/dyld

Allocated memory

Step 5

Execute our payload and ensure
continuation of execution

87 / 105

Strategy

 RDI points on our Obj-C forged object and we
control RIP

 We could try to stack pivot and ROP
 That’s what ret2 Systems did
 But complicated to ensure continuation of execution

How to restore the original RSP value?

 Pure JOP payload sounded like a better option…
 Use a JOP chain to set RDI
 Jump on system
 4 gadgets (dynamically found) to get arbitrary command

execution

Summary

89 / 105

Initial state

heap

stack

WindowServer

/usr/bin/dyld

Shared cache

90 / 105

Heap spray

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

91 / 105

Heap Massaging 1/2

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

0x70 Bytes 0x60 Bytes

92 / 105

Heap Massaging 2/2

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

93 / 105

Application allocation

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

94 / 105

Vulnerability triggering

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

95 / 105

Application destruction

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

96 / 105

Memory reuse

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

97 / 105

Redefinition of the property 1/4

stack

WindowServer

/usr/bin/dyld

heap

fake class + payload

Shared cache

98 / 105

Redefinition of the property 2/4

stack

WindowServer

/usr/bin/dyld

heap

fake class + payload

Shared cache

99 / 105

Redefinition of the property 3/4

stack

WindowServer

/usr/bin/dyld

heap

fake class + payload

Shared cache

100 / 105

Redefinition of the property 4/4

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

101 / 105

Clean

stack

WindowServer

/usr/bin/dyld

heap

Shared cache

Demo

103 / 105

Conclusion

 Challenge
 Exploit takes ~8sec to execute arbitrary commands

And we could gain some more seconds by pre-serializing things
 Exploit is very stable

The only thing that can fail is the allocation reuse
 Only CVE-2018-4193 was used

 Making good exploits takes time
 18 days for just 900 line of code
 But this is a lot of fun :)

 Exploit source is available
 https://github.com/Synacktiv/CVE-2018-4193

https://github.com/Synacktiv/CVE-2018-4193

104 / 105

Thanks

 ret2 Systems
 For the opportunity to work on this
 And the Binary Ninja commercial license!

 Synacktiv
 For the time and the reviews

 OffensiveCon
 For the amazing event :)

 My wife
 For letting me go to Berlin on Valentine's Day

 You
 For your attention!

THANK YOU FOR YOUR ATTENTION

Do you have any
questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

