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This presentation

Few reminders:

talk about interception techniques in practice

existing tools

Our contribution:

feedbacks of our tests (mobile phones, intercoms, cars...)

tools we made (Modmobmap and Modmobjam);

some cheap tricks;

some hardware attacks.

+ meet us tomorrow at Telco Security day → Modmob tools

internals, updates, and more! ;)



Introduction

Mobile network → more than 30 years

1G: analogic, bandwidth depending on the system (30 kHz

for AMPS, 25 kHz for TACS, etc.);

2G: FDMA (25 MHz) in combination with TDMA (in Europe);

3G: WCDMA fixed to 5 MHz, 10-20 MHz with carrier

aggregation

4G: OFDMA (downlink) and SC-FDMA (uplink), min. 1.4

MHz bandwidth (most common 5 MHz), CA up to 640 MHz

(3GPP release 13)

Evolution of modulation techniques and encoding → better

capacity, growth services...

Current use of the mobile network:

intercoms, delivery pick-up stations;

electric counters;

cameras, cars...
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Use of mobile network with intercoms

Pretty the same with connected cars!
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5G is coming...

LTE-A(dvanced)++ → 10

Gbps - 100 Gbps

theoretically), broader

spectrum

Targets IoT ecosystem

C-V2X
(Vehicle-to-Everything):

infrastructures (V2I);

networks (V2N);

vehicle (V2V);

pedestrians (V2P);

babies (V2B)?... source: blog.co-star.co.uk
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Security of communications

2G, 3G and 4G technologies are more accessible →
OpenBTS/OsmoBTS/YateBTS, OpenBTS-UMTS, srsLTE,

Amarisoft LTE, ...

Publications exist on A5/1 about weaknesses

GPRS, 3G and 4G use stronger ciphering algorithms:

KASUMI (UEA-1 algorithm);

Snow-3G (UE-2), second algorithm for UMTS and used for

LTE (128-EEA1);

AES 128 bits (128-EEA2) in addition to Snow-3G for LTE.
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Security of communications (2)

→ Exception exist depending on baseband implementation
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Targets in GPRS, UMTS and LTE exchanged

data

IP→ handled by Packet Data Convergence Protocol...

source: what-when-how.com
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Software-Defined radio

To interface to devices using the mobile network:
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Alternatives

sysmoBTS for GSM and GPRS

sysmoNITB for 3G/LTE → requires a custom/vulnerable

femtocell

LTE LabKit by Yate for LTE;

Amarisoft LTE → relevant and, as a great core network

implementation and includes Cat-NB1/NB2 and others...

commercial version of srsLTE including Cat-NB1

specialised equipments like CMU200 → helped some

researchers to find vulns in CDMA baseband stacks ;)
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Set-up: architecture example with bladeRF

Alternative: a limeSDR mini + osmoBTS (and other osmo*

components) for almost 100€ min.
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Enabling GPRS on YateBTS

As explained on YateBTS Wiki: edit the ybts.conf file

. . .

[ gprs ]

Enable=yes

. . .

for NGI invitation and information And configure the Gateway

GPRS Support Node section to handle exchange: GPRS ↔
Internet

. . .

[ ggsn ]

DNS=8.8 .8 .8 8 . 8 . 4 . 4 ; i t s p re fe rab le to use your own servers f o r c l i e n t s ide a t tacks

IP . MaxPacketSize=1520

IP . ReuseTimeout=180

IP . TossDupl icatePackets=no

Log f i l e .Name=/ tmp / sgsn . log

MS. IP . Base=192.168.99.1

MS. IP . MaxCount=254

TunName=sgsntun

. . .
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Testing it

Don’t forget to forward traffic from the internal network:

# echo 1 > / proc / sys / net / ipv4 / ip_ fo rward

# i p t ab l e s −A POSTROUTING −t nat −s 192.168.99.0/24 ! −d 192.168.99.0/24 − j MASQUERADE

And we are connected in GPRS (using a Nexus 5X phone):

→ But now, how to attract the target to our environment?
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Possible ways

Mobile devices always look for better signal reception

Generally there is > 1 mobile stack

Few tricks to consider:

use of custom (U)SIM card;

Faraday shield isolation;

downgrade attacks;

We’ill see how to revisit it with cheap equipments + some style

;)
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Method 1: Custom SIM/USIM cards

Prepaid SIM/USIM card in some cases

Or custom SIM/USIM card from sysmocom for example

→ Make the fake BTS/(e)NodeB act as a legit BTS
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Method 1: Custom SIM/USIM cards

Prepaid SIM/USIM card in some cases

Or custom SIM/USIM card from sysmocom for example

→ Make the fake BTS/(e)NodeB act as a legit BTS

Caution

Becaution with PIN auto-typing → use a SIMtrace tool to get

the typed PIN
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Program sysmoUSIM cards

Could be entirely configured → PySIM and

sysmo-usim-utils

Configure secrets:

Ki (subscriber key);

OP/c (Operator Variant Algorithm Configuration field);

and MCC/MNC to avoid roaming forcing on the User

Equipment (UE).

$ sudo python pySim−prog . py −p0 −t sysmoUSIM−SJS1 −a 50024782 −x 001 −y 01 − i

9017000000***** −s 89882110000002****** [ . . . ]

> Ki : 6abb9ae663f9889eddaae298cdcb4ec6

> OPC : 074a3a73ed3c54e1960e9e5732ff35b1

> ACC : None
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SIMtrace for the rescue

Sniff auto-typed PINs with the Osmocom SIMtrace:
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Method 2: Faraday cage

Mostly cumbersome and expensive

But could be improvised considering several elements:

Frequency;

Wavelength;

Power of reception or transmission;

Distance between the receiver and the transmitter.

Cage with meshes → optimised windows against reflection

of the electric field

Shielding boxes attenuate the signal quietly good!
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Practical shielding box for us:

1 Kg M&Ms box

Can feat small devices as well as a bladeRF, or limeSDR
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Space optimisation

We can use antenna extenders to avoid to put entire devices...
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Final set-up

And fill holes with an aluminum foil tape...
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Method 3: Downgrade attacks

Use a chear 2G/3G/4G jammer and rework it

Or perform smart-jamming:

1 monitor and collect cells data

2 jam precise frequencies from collected cells → choose few

target operators
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Monitoring: State of the Art

Recorded mobile towers

OpenCellid: Open Database of Cell Towers

Gsmmap.org

and so on.

Live scanning tools
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Monitoring: State of the Art

Recorded mobile towers

OpenCellid: Open Database of Cell Towers

Gsmmap.org

and so on.

Problem!

But these solutions don’t map in live and do not give precise

information about cell towers.

Live scanning tools
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Monitoring: State of the Art

Recorded mobile towers

Live scanning tools

for 2G cells:

Gammu/Wammu, DCT3-GSMTAP, and others

OsmocomBB via cell_log application

for 3G, 4G and more:

only tricks: use of exposed DIAG interface →decoding

→GSMTAP pseudo-header format

SnoopSnitch: not reflexible, but could be reworked for our

purposes ;)
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Methods to capture cells information

Possible methods are:

Software-Defined Radio

Exposed diagnostic interfaces

Use of Android RIL
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Software-Defined Radio

Existing tools:

Airprobe or GR-GSM

OpenLTE: LTE_fdd_dl_scan

srsLTE with srsUE
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Software-Defined Radio

Existing tools:

Airprobe or GR-GSM

OpenLTE: LTE_fdd_dl_scan

srsLTE with srsUE

No 3G

No 3G tools to capture cell information.
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Exposed DIAG interfaces

Good alternative

Could work with almost all bands we want

A little expensive: almost 300€

requirements:

U/EC20 3G/LTE modem PCengines APU2
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Cheaper way

U/EC20 3G/LTE modem

And an adaptater with (U)SIM slot
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RIL on Android

Daemon forwards

commands/messages:

application �Vendor RIL

vendor library is prorietary

and vendor specific

vendor library knows how
to talk to modem:

classic AT

QMI for Qualcomm

Samsung IPC Protocol

and so on.
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ServiceMode on Android

Usually activated by typing

a secret code

Gives interesting details of
current cell:

implicit network type

used band

reception (RX/DL)

or/and transmission

(TX/UP) (E/U)ARFCN

(Absolute Radio

Frequency Channel

Number)

PLMN (Public Land

Mobile Network) number

and so on.

ServiceMode in Samsung
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Samsung ServiceMode in brief

1 *#0011# secret code handled by ServiceModeApp_RIL

ServiceModeApp activity

2 ServiceModeApp →IPC connection

→SecFactoryPhoneTest SecPhoneService

3 ServiceModeApp starts the service mode

→invokeOemRilRequestRaw() through SecPhoneService

(send RIL command RIL_REQUEST_OEM_HOOK_RAW)

4 ServiceModeApp process in higher level ServiceMode

messages coming from RIL.

Best place to listen ServiceMode

Two good places exist: RIL library independent of Vendor RIL

library implementation, or use invokeOemRilRequestRaw()
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Few contraints to resolve

1 How to support other operators than your own SIM card?

2 How to enumerate cells a MS (Mobile Station) is supposed

to see?
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The camping concept in brief

Let’s remember 3GPP TS 43.022, ETSI TS 125 304...

When selecting a PLMN →MS looks for cells satisfying few

conditions (cell of the selected PLMN, not barred, pathloss

between MS and BTS below a thresold, and so on.)

Cells are checked in a descending order of the signal

strength

If a suitable is found →MS camps on it and tries to register
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The camping concept in brief

Let’s remember 3GPP TS 43.022, ETSI TS 125 304...

When selecting a PLMN →MS looks for cells satisfying few

conditions (cell of the selected PLMN, not barred, pathloss

between MS and BTS below a thresold, and so on.)

Cells are checked in a descending order of the signal

strength

If a suitable is found →MS camps on it and tries to register

Verified through DIAG and ServiceMode

If registration fails →MS camps to another cell until it can

register →verified via DIAG and ServiceMode
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Automate cell changes with AT commands

Android phones often expose a modem interface (e.g.
/dev/smd0), but could also be exposed in the host with few
configurations

127| she l l@k l te : / $ getprop r i l d . l i b a r g s

−d / dev / smd0

It is possible to:

set network type: AT^SYSCONFIG

list PLNM and select a PLMN: AT+COPS

→requires root privileges if it is performed in the phone
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Modmobmap: the monster we have created

We implemented interesting techniques in a tool we called

”Modmobmap” (reminds some tasty korean dish)
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Monitoring 2G/3G/4G cells

Using Modmobmap:

$ sudo python modmobmap. py −m servicemode −s <Android SDK path>

=> Requesting a l i s t o f MCC/MNC. Please wai t , i t may take a whi le . . .

[ + ] New c e l l detected [ Ce l l ID / PCI−DL_freq (XXXXXXXXX) ]

Network type=2G

PLMN=208−20

ARFCN=1014

Found 3 opera tor ( s )

{ u ’20810 ’ : u ’ F SFR’ , u ’20820 ’ : u ’ F−Bouygues Telecom ’ , u ’20801 ’ : u ’ Orange F ’ }

[ + ] Unreg is tered from cu r ren t PLMN

=> Changing MCC/MNC f o r : 20810

[ + ] New c e l l detected [ Ce l l ID / PCI−DL_freq (XXXXXXXXXX) ]

Network type=2G

PLMN=208−20

ARFCN=76

[ . . . ]

[ + ] New c e l l detected [ Ce l l ID / PCI−DL_freq (XXXXXXXXXX) ]

Network type=3G

PLMN=208−1

Band=8

Downlink UARFCN=3011

Upl ink UARFCN=2786

[ . . . ]

[ + ] Ce l l s save as cells_1536076848 . json # wi th an CTRL+C i n t e r r u p t
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Results of Modmobmap

The script produces a JSON file you can use with your own
tools:

{

”4b***−76”: {

”PLMN” : ”208−10” ,

” a r f cn ” : 76 ,

” c id ” : ”4b * * ” ,
” type ” : ”2G”

} ,

”60****−2950”: {

”PLMN” : ”208−20” ,

”RX” : 2950 ,

”TX ” : 2725 ,

” c id ” : 60*** ,
” band ” : 8 ,

” type ” : ”3G”

} ,

[ . . . ]

}

→ but we’ll see how it could be used for Jamming purposes!
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Jamming in general

With a portable/chineese device

cheap

jam the whole 2G/3G/(4G?) bands but requires some

modifications

poor signal

Desktop jammers
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Jamming in general

With a portable/chineese device

Desktop jammers

heavy, cumbersome but powerfull

also needs a disabling to conserve rogue cells’ band
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”Smart” jamming

Jam only targeted cells

Stealth against monitors

In 3 steps:

1 scan cells with Modmobmap;

2 target an operator;

3 and jam only targeted channels;

We have also made a tool for that! → Modmobjam → use

Software-Defined radio
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”Smart” jamming

Jam only targeted cells

Stealth against monitors

In 3 steps:

1 scan cells with Modmobmap;

2 target an operator;

3 and jam only targeted channels;

We have also made a tool for that! → Modmobjam → use

Software-Defined radio

Forbidden

Do it at your own risks and adjust settings to the targeted

parameter only. The same should also be done with you fake

BTS.
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Jamming with Modmobjam
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Analyzing GPRS data

Once we have trapped a device, its IMSI (International Mobile

Subscriber Identity) is listed:

nipc l i s t r eg i s t e red

IMSI MSISDN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20801XXXXXXXXXXXX 69691320681

Status displayed in SGSN Mobile list:

mbts sgsn l i s t

GMM Context : ims i =20801XXXXXXXXXXXXX ptmsi=0xd3001 t l l i =0xc00d3001 s ta te=

GmmRegisteredNormal age=5 i d l e =1 MS#1 , TLLI=c00d3001 ,8 d402e2e IPs =192.168.99.1
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Spotting used APNs

Using the GSMTAP interface

Could be interesting to intrude a virtual mobile network with a

provided M2M SIM card
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Capture exchanges

On the tun interface dedicated to SGSN:

In that case: two server ports identified → 60001/tcp and

55556/tcp
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Talk with one service

We could talk with a sort of synchronisation service on port

6001/tcp:

In that case: two server ports identified → 60001/tcp and

55556/tcp
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Identification
And could noticed that messages where only identified:
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Strange messages

When updating the device: some unknown messages are

exchanged on port 55556/tcp
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Strange messages (1)

By a naive approach it looked to be encrypted:

$ ent payload . hex

Entropy = 7.371044 b i t s per byte .

[ . . . ]

We have to ook at the firmware to try to decode this message
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UMTS interception

OpenBTS-UMTS could be used

But doesn’t support authentication and ciphering → SIM

mode only can be used

Disabling USIM mode with a sysmoUSIM card:

$ sudo python sysmo−usim−t o o l . s j s1 . py −a 772***** −c

[ . . . ]

==> USIM app l i c a t i o n d isab led

Other alternatives: CMU2000, vulnerable/custom femtocells...
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LTE interception

Use of srsLTE → free and stable

Secrets of the SIM should be configured (ex. sysmoUSIM):

RAND: generated challenge by the HSS (Home Suscriber

Server) in the HLR/AuC → generates next authentication

vectors

XRES: result of the challenge/response by the UE

AUTN: authentication token

KASME: derivation key of the ciphering and integrity keys
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srsLTE setup

Secrets could be setup in the user_db.csv DB of LTE EPC
network:

# v i / r oo t / . s rs / user_db . csv

[ . . . ]

ue3 ,9017000000***** , b5997ac4a912e9c6216e13951029c674 , opc ,83 e5d3f22da411
072508f675d2e9e9d9 ,9001 ,000000000062 ,7

A good configuration should result as follows:

[ . . . ]

UE Au then t i ca t i on Accepted .

[ . . . ]

SPGW Al loca ted IP 172.16.0 .2 to ISMI 9017000000*****
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srsLTE setup

Secrets could be setup in the user_db.csv DB of LTE EPC
network:

# v i / r oo t / . s rs / user_db . csv

[ . . . ]

ue3 ,9017000000***** , b5997ac4a912e9c6216e13951029c674 , opc ,83 e5d3f22da411
072508f675d2e9e9d9 ,9001 ,000000000062 ,7

A good configuration should result as follows:

[ . . . ]

UE Au then t i ca t i on Accepted .

[ . . . ]

SPGW Al loca ted IP 172.16.0 .2 to ISMI 9017000000*****

Problems with IoT modems

IoT modems use Cat M1 and NB-IoT→ only implemented in

commercial/private version of srsLTE and Amarisoft
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Go further in 5G

Use of OpenAirInterface5G

EPC part requires a licence

NextEPC or pycrate_mobile could be used and readapted

for the EPC part
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Issues during tests

Generally, data are trusted and sent in clear-text, but there are

some exceptions:

whitelist of connections to the backend;

use of client side certificates;

Moreover, USIM card could be embeeded → potentially

accessible via SPI interface → try a kind of relay attack



1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion



52

Identifying components

The 3G intercom

SIM/USIM slot (yellow)

3G modem (blue)

MCU (Microcontroller Unit)

(green)

A strange interface (red)
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Microchip - PIC24FJ128 - GA006

Use schematics to identify PINs via continuity tests:

Identified PINs

PGC1 (pin 25);

PGD1 (pin 16);

Vdd (pin 38);

/MCLR (pin 7);

AVss (pin 19).
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Interfacing and dumping the firmware

Dumping it with MPLAB-X software
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Firmware analysis: strings

Firmware dumped in Intel Hex format and contains AT

commands: AT+COPS; AT+CREG

0001ab00 02 00 78 00 00 80 fa 00 00 00 06 00 41 54 00 00 | . . x . . . . . . . . . AT . . |

0001ab10 2b 4e 00 00 45 54 00 00 43 4c 00 00 4 f 53 00 00 |+N . . ET . . CL . .OS . . |

0001ab20 45 0d 00 00 00 2b 00 00 43 4c 00 00 49 50 00 00 |E . . . . + . . CL . . IP . . |

0001ab30 3a 20 00 00 22 1b 00 00 df 22 00 00 2c 1b 00 00 | : . . ” . . . . ” . . , . . . |

0001ab40 ef 00 00 00 45 52 00 00 52 4 f 00 00 52 00 00 00 | . . . . ER . .RO. .R . . . |

0001ab50 41 54 00 00 2b 43 00 00 4 f 50 00 00 53 3d 00 00 |AT . . +C . .OP. . S = . . |

0001ab60 33 2c 00 00 32 0d 00 00 00 41 00 00 54 2b 00 00 | 3 , . . 2 . . . . A . . T + . . |

0001ab70 43 4 f 00 00 50 53 00 00 3 f 0d 00 00 00 2b 00 00 |CO. . PS . . ? . . . . + . . |

0001ab80 43 4 f 00 00 50 53 00 00 3a 20 00 00 1b ef 00 00 |CO. . PS . . : . . . . . . |

0001ab90 2c 1b 00 00 ef 2c 00 00 22 1b 00 00 df 22 00 00 | , . . . . , . . ” . . . . ” . . |

0001aba0 2c 1b 00 00 ef 00 00 00 2b 43 00 00 4 f 50 00 00 | , . . . . . . . + C . .OP . . |

0001abb0 53 3a 00 00 20 30 00 00 00 41 00 00 54 2b 00 00 |S : . . 0 . . . A . . T + . . |

0001abc0 43 4 f 00 00 50 53 00 00 3d 34 00 00 2c 32 00 00 |CO. . PS . . = 4 . . , 2 . . |

0001abd0 2c 1b 00 00 eb 2c 00 00 32 0d 00 00 00 41 00 00 | , . . . . , . . 2 . . . . A . . |

0001abe0 54 2b 00 00 43 53 00 00 51 0d 00 00 00 2b 00 00 | T+ . .CS . .Q . . . . + . . |

0001abf0 43 53 00 00 51 3a 00 00 20 1b 00 00 ef 2c 00 00 |CS . .Q : . . . . . . , . . |

0001ac00 1b ef 00 00 00 41 00 00 54 2b 00 00 43 52 00 00 | . . . . . A . . T + . .CR . . |

0001ac10 45 47 00 00 3 f 0d 00 00 00 2b 00 00 43 52 00 00 |EG . . ? . . . . + . . CR . . |

0001ac20 45 47 00 00 3a 20 00 00 1b ef 00 00 2c 1b 00 00 |EG . . : . . . . . . , . . . |

[ . . . ]
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Firmware analysis: strings (2)

Looking for strings, it was possible to quickly find AT commands

used to connect to endpoints:

AT+TCPCONNECT=”gsm.XXXXXXXXX.info”,60001;

AT+TCPCONNECT=”gsm.XXXXXXXXX.info”,5555 (last

number ”6” is missing);

AT+TCPCONNECT=”91.121.XX.XX”,5555 (last number ”6”

is missing).

But also intercom’s number ID XX4015:

00017d80 15 40 XX 00 80 4a 78 00 63 00 60 00 66 40 78 00 | .@X. . Jx . c . ‘ . f@x . |
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Firmware disassembly

No disassembler available

for PIC24 before

But changed with IDA 7.2

and of course Ghidra!
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Hardware audit tip

Like almost every vendor’s IDE, MPLAB gives status of

memory protections/fuse bits:
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Other Interfaces

Various other interfaces could be found in the wild

UART (Universal Asynchronous Receiver/Transmitter): to

interface to bootloader (ex: uBoot) and device terminal

JTAG (Joint Test Action Group): to communicate with the

different devices of the PCB

SPI (Serial Peripheral Interface): communication MCU ↔
other peripherals

I2C: link MCU, EEPROMs, and other modules

others In-chip interfaces, etc.

These interfaces can be found with logic analyzers, probes, but

also dedicated tools sometimes...
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Device to interface

Various devices could be used to get accesses to an interface:

The famous SEGGER JLink that works like a charm, but

expensive depending on options...

Bus pirate v3 (warning v4 not mature enough)

BusVoodoo → supports 14 TTL/CMOS protocols

HydraBUS→ another powerful swiss knife (include a funny

NFC modules for emulation and could be used to

bruteforce JTAG PINs)

and so on.

Sometimes rare/industrial protocols and MCUs could also be

supported by Trace32 tools → it has a costs
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Bruteforcing JTAG and UART PINs

For almost 200€ with JTAGulator
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Bruteforcing JTAG and UART PINs (2)

With BUSSide for almost 8€:
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Chip-off in last resort

Example with a TSOP48 flash:
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Memory protections bypasses

Block reading by backdooring the entrypoint on

PIC18F552 (ex: iCLASS keys extraction)

Cold-Boot stepping attacks on STM32F0 series

UV-C attacks

RDP2 downgrade to RDP1 on STM32F1 and STM32F3

(ex: TREZOR wallet hack → wallet.fail)

and so on.
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Other targets

Like intercoms: use of Mobile network is convenient → no

wires no problem

Overcases:

Deposit cases;

Alarms;

Connected cars...
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Other targets

Like intercoms: use of Mobile network is convenient → no

wires no problem

Overcases:

Deposit cases;

Alarms;

Connected cars...
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Garage hacker: the CAN bus

ODB/ODB2 interface: a lot

of interest

Possible to interact in the

CAN bus

But too many messages

are broadcasted in it →
needs processing to focus

on interesting messages

However, the car as many interfaces that interacts with the

CAN bus
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Connected cars

Mobile network is generally

used

Possible to install

applications

GPRS is generally used for

middle class cars → really

easy to intercept

But parking cars are also

well isolated →
Modmobjam not needed
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Our target

Enable the installation of applications

Can be update

Plenty of available applications:

Twitter application and Facebook (WTF?)

Meteo

GPS

etc.

And all of that ”in the air”
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Hunting for mobile modules remotely

Using a BladeRF:
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Issues in our context

The servers could not be contacted with an arbitrary

connection :/

We can still poison/hook all DNS queries and get requests

from clients → attack the client with a fake server
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Client-side attack: new captures

Surprise: all requests made by the board computer and apps

are in clear HTTP...
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Client-side attack: sweets



74

Opportunities

Remember the Android version is 4.0.4:

Some apps perform web requests → JavaScript Interface

RCE

Other request XML files → XXE attacks

And all other CVE to replay!
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Spotted API

Very similar to mobile app API calls! But no “OAuth” token?!
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API: “Mobile app” VS “Cars/others...”

Mobile APP

open and close car door

start/stop the clim

all of these actions are

authentified → OAuth, etc.

uses HTTPS → well

verified by default on new

Android device

Cars and others

open and close car door

start/stop the clim

talks on HTTP

sometimes use only SMS

messages

use only identification

payload are sometimes

encrypted with a same

shared key

rare cases: mutual

authentication (expecially

on external dongles)

In most cases car board computers needs to be reversed
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Interception in a parking station

> 10 board computers collected in the fake base station
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Read more about this

Our blog post: Hunting mobile devices endpoints

More stuff could be found on other systems...

Other case: The ComboBox in BMW

https://www.heise.de/ct/artikel/Beemer-Open-Thyself-

Security-vulnerabilities-in-BMW-s-ConnectedDrive-

2540957.html
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XTRX

mPCI-e

perfect for embeded radio

osmoTRX is not well

supported at the moment,

but patience!

fit perfectly on APU2, UP2

and Orange PI rk3399

boards
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APU2 example
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Conclusion

A lot of IoT devices use the mobile network to be managed

in remote

Mobile interception techniques could be applied on IoT

device

Techniques are accessible → equipments, tools and tricks

are not so expensive

Modmobmap and Modmobjam → when physical accesses

are not possible on targeted devices

But some devices only have a 3G or a LTE stack

Interceptions on UMTS and LTE requires a custom (U)SIM

(unless there is a missing auth check in BB)

Hardware hacking → complementary but also a last

ressort sometimes
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Downloads

Modmobmap:

https://github.com/Synacktiv/Modmobmap

Modmobjam:

https://github.com/Synacktiv/Modmobjam
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Thanks =)

Joffrey Czarny (@_Sn0rkY)

Priya Chalakkal (@priyachalakkal)

Rachelle Boissard (@rachelle_off)

Troopers staff (@WEareTROOPERS)

Guillaume Delugré (@lapinhib0u) → spotting few mistakes

in slide 3

And of course → You all ;)



THANK YOU FOR YOUR ATTENTION,

ANY QUESTIONS?
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