
Modmob tools and tricks

Using cheap tools and tricks to attack mobile

devices in practice

By Sébastien Dudek

Troopers - NGI

March 18th 2019

(update: 19/04/2019)

About me

Sébastien Dudek

(@FlUxIuS)

Working at Synacktiv:

pentests, red team, audits,

vuln researches

Likes radio and hardware

And to confront theory vs.

practice

First time at Troopers =)!

This presentation

Few reminders:

talk about interception techniques in practice

existing tools

Our contribution:

feedbacks of our tests (mobile phones, intercoms, cars...)

tools we made (Modmobmap and Modmobjam);

some cheap tricks;

some hardware attacks.

+ meet us tomorrow at Telco Security day → Modmob tools

internals, updates, and more! ;)

Introduction

Mobile network → more than 30 years

1G: analogic, bandwidth depending on the system (30 kHz

for AMPS, 25 kHz for TACS, etc.);

2G: FDMA (25 MHz) in combination with TDMA (in Europe);

3G: WCDMA fixed to 5 MHz, 10-20 MHz with carrier

aggregation

4G: OFDMA (downlink) and SC-FDMA (uplink), min. 1.4

MHz bandwidth (most common 5 MHz), CA up to 640 MHz

(3GPP release 13)

Evolution of modulation techniques and encoding → better

capacity, growth services...

Current use of the mobile network:

intercoms, delivery pick-up stations;

electric counters;

cameras, cars...

4

Use of mobile network with intercoms

Pretty the same with connected cars!

5

5G is coming...

LTE-A(dvanced)++ → 10

Gbps - 100 Gbps

theoretically), broader

spectrum

Targets IoT ecosystem

C-V2X
(Vehicle-to-Everything):

infrastructures (V2I);

networks (V2N);

vehicle (V2V);

pedestrians (V2P);

babies (V2B)?... source: blog.co-star.co.uk

6

Security of communications

2G, 3G and 4G technologies are more accessible →
OpenBTS/OsmoBTS/YateBTS, OpenBTS-UMTS, srsLTE,

Amarisoft LTE, ...

Publications exist on A5/1 about weaknesses

GPRS, 3G and 4G use stronger ciphering algorithms:

KASUMI (UEA-1 algorithm);

Snow-3G (UE-2), second algorithm for UMTS and used for

LTE (128-EEA1);

AES 128 bits (128-EEA2) in addition to Snow-3G for LTE.

7

Security of communications (2)

→ Exception exist depending on baseband implementation

8

Targets in GPRS, UMTS and LTE exchanged

data

IP→ handled by Packet Data Convergence Protocol...

source: what-when-how.com

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

9

Software-Defined radio

To interface to devices using the mobile network:

10

Alternatives

sysmoBTS for GSM and GPRS

sysmoNITB for 3G/LTE → requires a custom/vulnerable

femtocell

LTE LabKit by Yate for LTE;

Amarisoft LTE → relevant and, as a great core network

implementation and includes Cat-NB1/NB2 and others...

commercial version of srsLTE including Cat-NB1

specialised equipments like CMU200 → helped some

researchers to find vulns in CDMA baseband stacks ;)

11

Set-up: architecture example with bladeRF

Alternative: a limeSDR mini + osmoBTS (and other osmo*

components) for almost 100€ min.

12

Enabling GPRS on YateBTS

As explained on YateBTS Wiki: edit the ybts.conf file

. . .

[gprs]

Enable=yes

. . .

for NGI invitation and information And configure the Gateway

GPRS Support Node section to handle exchange: GPRS ↔
Internet

. . .

[ggsn]

DNS=8.8 .8 .8 8 . 8 . 4 . 4 ; i t s p re fe rab le to use your own servers f o r c l i e n t s ide a t tacks

IP . MaxPacketSize=1520

IP . ReuseTimeout=180

IP . TossDupl icatePackets=no

Log f i l e .Name=/ tmp / sgsn . log

MS. IP . Base=192.168.99.1

MS. IP . MaxCount=254

TunName=sgsntun

. . .

13

Testing it

Don’t forget to forward traffic from the internal network:

echo 1 > / proc / sys / net / ipv4 / ip_ fo rward

i p t ab l e s −A POSTROUTING −t nat −s 192.168.99.0/24 ! −d 192.168.99.0/24 − j MASQUERADE

And we are connected in GPRS (using a Nexus 5X phone):

→ But now, how to attract the target to our environment?

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

14

Possible ways

Mobile devices always look for better signal reception

Generally there is > 1 mobile stack

Few tricks to consider:

use of custom (U)SIM card;

Faraday shield isolation;

downgrade attacks;

We’ill see how to revisit it with cheap equipments + some style

;)

15

Method 1: Custom SIM/USIM cards

Prepaid SIM/USIM card in some cases

Or custom SIM/USIM card from sysmocom for example

→ Make the fake BTS/(e)NodeB act as a legit BTS

15

Method 1: Custom SIM/USIM cards

Prepaid SIM/USIM card in some cases

Or custom SIM/USIM card from sysmocom for example

→ Make the fake BTS/(e)NodeB act as a legit BTS

Caution

Becaution with PIN auto-typing → use a SIMtrace tool to get

the typed PIN

16

Program sysmoUSIM cards

Could be entirely configured → PySIM and

sysmo-usim-utils

Configure secrets:

Ki (subscriber key);

OP/c (Operator Variant Algorithm Configuration field);

and MCC/MNC to avoid roaming forcing on the User

Equipment (UE).

$ sudo python pySim−prog . py −p0 −t sysmoUSIM−SJS1 −a 50024782 −x 001 −y 01 − i

9017000000***** −s 89882110000002****** [. . .]

> Ki : 6abb9ae663f9889eddaae298cdcb4ec6

> OPC : 074a3a73ed3c54e1960e9e5732ff35b1

> ACC : None

17

SIMtrace for the rescue

Sniff auto-typed PINs with the Osmocom SIMtrace:

18

Method 2: Faraday cage

Mostly cumbersome and expensive

But could be improvised considering several elements:

Frequency;

Wavelength;

Power of reception or transmission;

Distance between the receiver and the transmitter.

Cage with meshes → optimised windows against reflection

of the electric field

Shielding boxes attenuate the signal quietly good!

19

Practical shielding box for us:

1 Kg M&Ms box

Can feat small devices as well as a bladeRF, or limeSDR

20

Space optimisation

We can use antenna extenders to avoid to put entire devices...

21

Final set-up

And fill holes with an aluminum foil tape...

22

Method 3: Downgrade attacks

Use a chear 2G/3G/4G jammer and rework it

Or perform smart-jamming:

1 monitor and collect cells data

2 jam precise frequencies from collected cells → choose few

target operators

23

Monitoring: State of the Art

Recorded mobile towers

OpenCellid: Open Database of Cell Towers

Gsmmap.org

and so on.

Live scanning tools

23

Monitoring: State of the Art

Recorded mobile towers

OpenCellid: Open Database of Cell Towers

Gsmmap.org

and so on.

Problem!

But these solutions don’t map in live and do not give precise

information about cell towers.

Live scanning tools

23

Monitoring: State of the Art

Recorded mobile towers

Live scanning tools

for 2G cells:

Gammu/Wammu, DCT3-GSMTAP, and others

OsmocomBB via cell_log application

for 3G, 4G and more:

only tricks: use of exposed DIAG interface →decoding

→GSMTAP pseudo-header format

SnoopSnitch: not reflexible, but could be reworked for our

purposes ;)

24

Methods to capture cells information

Possible methods are:

Software-Defined Radio

Exposed diagnostic interfaces

Use of Android RIL

25

Software-Defined Radio

Existing tools:

Airprobe or GR-GSM

OpenLTE: LTE_fdd_dl_scan

srsLTE with srsUE

25

Software-Defined Radio

Existing tools:

Airprobe or GR-GSM

OpenLTE: LTE_fdd_dl_scan

srsLTE with srsUE

No 3G

No 3G tools to capture cell information.

26

Exposed DIAG interfaces

Good alternative

Could work with almost all bands we want

A little expensive: almost 300€

requirements:

U/EC20 3G/LTE modem PCengines APU2

27

Cheaper way

U/EC20 3G/LTE modem

And an adaptater with (U)SIM slot

28

RIL on Android

Daemon forwards

commands/messages:

application �Vendor RIL

vendor library is prorietary

and vendor specific

vendor library knows how
to talk to modem:

classic AT

QMI for Qualcomm

Samsung IPC Protocol

and so on.

29

ServiceMode on Android

Usually activated by typing

a secret code

Gives interesting details of
current cell:

implicit network type

used band

reception (RX/DL)

or/and transmission

(TX/UP) (E/U)ARFCN

(Absolute Radio

Frequency Channel

Number)

PLMN (Public Land

Mobile Network) number

and so on.

ServiceMode in Samsung

30

Samsung ServiceMode in brief

1 *#0011# secret code handled by ServiceModeApp_RIL

ServiceModeApp activity

2 ServiceModeApp →IPC connection

→SecFactoryPhoneTest SecPhoneService

3 ServiceModeApp starts the service mode

→invokeOemRilRequestRaw() through SecPhoneService

(send RIL command RIL_REQUEST_OEM_HOOK_RAW)

4 ServiceModeApp process in higher level ServiceMode

messages coming from RIL.

Best place to listen ServiceMode

Two good places exist: RIL library independent of Vendor RIL

library implementation, or use invokeOemRilRequestRaw()

31

Few contraints to resolve

1 How to support other operators than your own SIM card?

2 How to enumerate cells a MS (Mobile Station) is supposed

to see?

32

The camping concept in brief

Let’s remember 3GPP TS 43.022, ETSI TS 125 304...

When selecting a PLMN →MS looks for cells satisfying few

conditions (cell of the selected PLMN, not barred, pathloss

between MS and BTS below a thresold, and so on.)

Cells are checked in a descending order of the signal

strength

If a suitable is found →MS camps on it and tries to register

32

The camping concept in brief

Let’s remember 3GPP TS 43.022, ETSI TS 125 304...

When selecting a PLMN →MS looks for cells satisfying few

conditions (cell of the selected PLMN, not barred, pathloss

between MS and BTS below a thresold, and so on.)

Cells are checked in a descending order of the signal

strength

If a suitable is found →MS camps on it and tries to register

Verified through DIAG and ServiceMode

If registration fails →MS camps to another cell until it can

register →verified via DIAG and ServiceMode

33

Automate cell changes with AT commands

Android phones often expose a modem interface (e.g.
/dev/smd0), but could also be exposed in the host with few
configurations

127| she l l@k l te : / $ getprop r i l d . l i b a r g s

−d / dev / smd0

It is possible to:

set network type: AT^SYSCONFIG

list PLNM and select a PLMN: AT+COPS

→requires root privileges if it is performed in the phone

34

Modmobmap: the monster we have created

We implemented interesting techniques in a tool we called

”Modmobmap” (reminds some tasty korean dish)

35

Monitoring 2G/3G/4G cells

Using Modmobmap:

$ sudo python modmobmap. py −m servicemode −s <Android SDK path>

=> Requesting a l i s t o f MCC/MNC. Please wai t , i t may take a whi le . . .

[+] New c e l l detected [Ce l l ID / PCI−DL_freq (XXXXXXXXX)]

Network type=2G

PLMN=208−20

ARFCN=1014

Found 3 opera tor (s)

{ u ’20810 ’ : u ’ F SFR’ , u ’20820 ’ : u ’ F−Bouygues Telecom ’ , u ’20801 ’ : u ’ Orange F ’ }

[+] Unreg is tered from cu r ren t PLMN

=> Changing MCC/MNC f o r : 20810

[+] New c e l l detected [Ce l l ID / PCI−DL_freq (XXXXXXXXXX)]

Network type=2G

PLMN=208−20

ARFCN=76

[. . .]

[+] New c e l l detected [Ce l l ID / PCI−DL_freq (XXXXXXXXXX)]

Network type=3G

PLMN=208−1

Band=8

Downlink UARFCN=3011

Upl ink UARFCN=2786

[. . .]

[+] Ce l l s save as cells_1536076848 . json # wi th an CTRL+C i n t e r r u p t

36

Results of Modmobmap

The script produces a JSON file you can use with your own
tools:

{

”4b***−76”: {

”PLMN” : ”208−10” ,

” a r f cn ” : 76 ,

” c id ” : ”4b * * ” ,
” type ” : ”2G”

} ,

”60****−2950”: {

”PLMN” : ”208−20” ,

”RX” : 2950 ,

”TX ” : 2725 ,

” c id ” : 60*** ,
” band ” : 8 ,

” type ” : ”3G”

} ,

[. . .]

}

→ but we’ll see how it could be used for Jamming purposes!

37

Jamming in general

With a portable/chineese device

cheap

jam the whole 2G/3G/(4G?) bands but requires some

modifications

poor signal

Desktop jammers

37

Jamming in general

With a portable/chineese device

Desktop jammers

heavy, cumbersome but powerfull

also needs a disabling to conserve rogue cells’ band

38

”Smart” jamming

Jam only targeted cells

Stealth against monitors

In 3 steps:

1 scan cells with Modmobmap;

2 target an operator;

3 and jam only targeted channels;

We have also made a tool for that! → Modmobjam → use

Software-Defined radio

38

”Smart” jamming

Jam only targeted cells

Stealth against monitors

In 3 steps:

1 scan cells with Modmobmap;

2 target an operator;

3 and jam only targeted channels;

We have also made a tool for that! → Modmobjam → use

Software-Defined radio

Forbidden

Do it at your own risks and adjust settings to the targeted

parameter only. The same should also be done with you fake

BTS.

39

Jamming with Modmobjam

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

40

Analyzing GPRS data

Once we have trapped a device, its IMSI (International Mobile

Subscriber Identity) is listed:

nipc l i s t r eg i s t e red

IMSI MSISDN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20801XXXXXXXXXXXX 69691320681

Status displayed in SGSN Mobile list:

mbts sgsn l i s t

GMM Context : ims i =20801XXXXXXXXXXXXX ptmsi=0xd3001 t l l i =0xc00d3001 s ta te=

GmmRegisteredNormal age=5 i d l e =1 MS#1 , TLLI=c00d3001 ,8 d402e2e IPs =192.168.99.1

41

Spotting used APNs

Using the GSMTAP interface

Could be interesting to intrude a virtual mobile network with a

provided M2M SIM card

42

Capture exchanges

On the tun interface dedicated to SGSN:

In that case: two server ports identified → 60001/tcp and

55556/tcp

43

Talk with one service

We could talk with a sort of synchronisation service on port

6001/tcp:

In that case: two server ports identified → 60001/tcp and

55556/tcp

44

Identification
And could noticed that messages where only identified:

45

Strange messages

When updating the device: some unknown messages are

exchanged on port 55556/tcp

46

Strange messages (1)

By a naive approach it looked to be encrypted:

$ ent payload . hex

Entropy = 7.371044 b i t s per byte .

[. . .]

We have to ook at the firmware to try to decode this message

47

UMTS interception

OpenBTS-UMTS could be used

But doesn’t support authentication and ciphering → SIM

mode only can be used

Disabling USIM mode with a sysmoUSIM card:

$ sudo python sysmo−usim−t o o l . s j s1 . py −a 772***** −c

[. . .]

==> USIM app l i c a t i o n d isab led

Other alternatives: CMU2000, vulnerable/custom femtocells...

48

LTE interception

Use of srsLTE → free and stable

Secrets of the SIM should be configured (ex. sysmoUSIM):

RAND: generated challenge by the HSS (Home Suscriber

Server) in the HLR/AuC → generates next authentication

vectors

XRES: result of the challenge/response by the UE

AUTN: authentication token

KASME: derivation key of the ciphering and integrity keys

49

srsLTE setup

Secrets could be setup in the user_db.csv DB of LTE EPC
network:

v i / r oo t / . s rs / user_db . csv

[. . .]

ue3 ,9017000000***** , b5997ac4a912e9c6216e13951029c674 , opc ,83 e5d3f22da411
072508f675d2e9e9d9 ,9001 ,000000000062 ,7

A good configuration should result as follows:

[. . .]

UE Au then t i ca t i on Accepted .

[. . .]

SPGW Al loca ted IP 172.16.0 .2 to ISMI 9017000000*****

49

srsLTE setup

Secrets could be setup in the user_db.csv DB of LTE EPC
network:

v i / r oo t / . s rs / user_db . csv

[. . .]

ue3 ,9017000000***** , b5997ac4a912e9c6216e13951029c674 , opc ,83 e5d3f22da411
072508f675d2e9e9d9 ,9001 ,000000000062 ,7

A good configuration should result as follows:

[. . .]

UE Au then t i ca t i on Accepted .

[. . .]

SPGW Al loca ted IP 172.16.0 .2 to ISMI 9017000000*****

Problems with IoT modems

IoT modems use Cat M1 and NB-IoT→ only implemented in

commercial/private version of srsLTE and Amarisoft

50

Go further in 5G

Use of OpenAirInterface5G

EPC part requires a licence

NextEPC or pycrate_mobile could be used and readapted

for the EPC part

51

Issues during tests

Generally, data are trusted and sent in clear-text, but there are

some exceptions:

whitelist of connections to the backend;

use of client side certificates;

Moreover, USIM card could be embeeded → potentially

accessible via SPI interface → try a kind of relay attack

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

52

Identifying components

The 3G intercom

SIM/USIM slot (yellow)

3G modem (blue)

MCU (Microcontroller Unit)

(green)

A strange interface (red)

53

Microchip - PIC24FJ128 - GA006

Use schematics to identify PINs via continuity tests:

Identified PINs

PGC1 (pin 25);

PGD1 (pin 16);

Vdd (pin 38);

/MCLR (pin 7);

AVss (pin 19).

54

Interfacing and dumping the firmware

Dumping it with MPLAB-X software

55

Firmware analysis: strings

Firmware dumped in Intel Hex format and contains AT

commands: AT+COPS; AT+CREG

0001ab00 02 00 78 00 00 80 fa 00 00 00 06 00 41 54 00 00 | . . x AT . . |

0001ab10 2b 4e 00 00 45 54 00 00 43 4c 00 00 4 f 53 00 00 |+N . . ET . . CL . .OS . . |

0001ab20 45 0d 00 00 00 2b 00 00 43 4c 00 00 49 50 00 00 |E + . . CL . . IP . . |

0001ab30 3a 20 00 00 22 1b 00 00 df 22 00 00 2c 1b 00 00 | : . . ” ” . . , . . . |

0001ab40 ef 00 00 00 45 52 00 00 52 4 f 00 00 52 00 00 00 | ER . .RO. .R . . . |

0001ab50 41 54 00 00 2b 43 00 00 4 f 50 00 00 53 3d 00 00 |AT . . +C . .OP. . S = . . |

0001ab60 33 2c 00 00 32 0d 00 00 00 41 00 00 54 2b 00 00 | 3 , . . 2 A . . T + . . |

0001ab70 43 4 f 00 00 50 53 00 00 3 f 0d 00 00 00 2b 00 00 |CO. . PS . . ? + . . |

0001ab80 43 4 f 00 00 50 53 00 00 3a 20 00 00 1b ef 00 00 |CO. . PS . . : |

0001ab90 2c 1b 00 00 ef 2c 00 00 22 1b 00 00 df 22 00 00 | , , . . ” ” . . |

0001aba0 2c 1b 00 00 ef 00 00 00 2b 43 00 00 4 f 50 00 00 | , + C . .OP . . |

0001abb0 53 3a 00 00 20 30 00 00 00 41 00 00 54 2b 00 00 |S : . . 0 . . . A . . T + . . |

0001abc0 43 4 f 00 00 50 53 00 00 3d 34 00 00 2c 32 00 00 |CO. . PS . . = 4 . . , 2 . . |

0001abd0 2c 1b 00 00 eb 2c 00 00 32 0d 00 00 00 41 00 00 | , , . . 2 A . . |

0001abe0 54 2b 00 00 43 53 00 00 51 0d 00 00 00 2b 00 00 | T+ . .CS . .Q + . . |

0001abf0 43 53 00 00 51 3a 00 00 20 1b 00 00 ef 2c 00 00 |CS . .Q : , . . |

0001ac00 1b ef 00 00 00 41 00 00 54 2b 00 00 43 52 00 00 | A . . T + . .CR . . |

0001ac10 45 47 00 00 3 f 0d 00 00 00 2b 00 00 43 52 00 00 |EG . . ? + . . CR . . |

0001ac20 45 47 00 00 3a 20 00 00 1b ef 00 00 2c 1b 00 00 |EG . . : , . . . |

[. . .]

56

Firmware analysis: strings (2)

Looking for strings, it was possible to quickly find AT commands

used to connect to endpoints:

AT+TCPCONNECT=”gsm.XXXXXXXXX.info”,60001;

AT+TCPCONNECT=”gsm.XXXXXXXXX.info”,5555 (last

number ”6” is missing);

AT+TCPCONNECT=”91.121.XX.XX”,5555 (last number ”6”

is missing).

But also intercom’s number ID XX4015:

00017d80 15 40 XX 00 80 4a 78 00 63 00 60 00 66 40 78 00 | .@X. . Jx . c . ‘ . f@x . |

57

Firmware disassembly

No disassembler available

for PIC24 before

But changed with IDA 7.2

and of course Ghidra!

58

Hardware audit tip

Like almost every vendor’s IDE, MPLAB gives status of

memory protections/fuse bits:

59

Other Interfaces

Various other interfaces could be found in the wild

UART (Universal Asynchronous Receiver/Transmitter): to

interface to bootloader (ex: uBoot) and device terminal

JTAG (Joint Test Action Group): to communicate with the

different devices of the PCB

SPI (Serial Peripheral Interface): communication MCU ↔
other peripherals

I2C: link MCU, EEPROMs, and other modules

others In-chip interfaces, etc.

These interfaces can be found with logic analyzers, probes, but

also dedicated tools sometimes...

60

Device to interface

Various devices could be used to get accesses to an interface:

The famous SEGGER JLink that works like a charm, but

expensive depending on options...

Bus pirate v3 (warning v4 not mature enough)

BusVoodoo → supports 14 TTL/CMOS protocols

HydraBUS→ another powerful swiss knife (include a funny

NFC modules for emulation and could be used to

bruteforce JTAG PINs)

and so on.

Sometimes rare/industrial protocols and MCUs could also be

supported by Trace32 tools → it has a costs

61

Bruteforcing JTAG and UART PINs

For almost 200€ with JTAGulator

62

Bruteforcing JTAG and UART PINs (2)

With BUSSide for almost 8€:

63

Chip-off in last resort

Example with a TSOP48 flash:

64

Memory protections bypasses

Block reading by backdooring the entrypoint on

PIC18F552 (ex: iCLASS keys extraction)

Cold-Boot stepping attacks on STM32F0 series

UV-C attacks

RDP2 downgrade to RDP1 on STM32F1 and STM32F3

(ex: TREZOR wallet hack → wallet.fail)

and so on.

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

65

Other targets

Like intercoms: use of Mobile network is convenient → no

wires no problem

Overcases:

Deposit cases;

Alarms;

Connected cars...

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

66

Other targets

Like intercoms: use of Mobile network is convenient → no

wires no problem

Overcases:

Deposit cases;

Alarms;

Connected cars...

67

Garage hacker: the CAN bus

ODB/ODB2 interface: a lot

of interest

Possible to interact in the

CAN bus

But too many messages

are broadcasted in it →
needs processing to focus

on interesting messages

However, the car as many interfaces that interacts with the

CAN bus

68

Connected cars

Mobile network is generally

used

Possible to install

applications

GPRS is generally used for

middle class cars → really

easy to intercept

But parking cars are also

well isolated →
Modmobjam not needed

69

Our target

Enable the installation of applications

Can be update

Plenty of available applications:

Twitter application and Facebook (WTF?)

Meteo

GPS

etc.

And all of that ”in the air”

70

Hunting for mobile modules remotely

Using a BladeRF:

71

Issues in our context

The servers could not be contacted with an arbitrary

connection :/

We can still poison/hook all DNS queries and get requests

from clients → attack the client with a fake server

72

Client-side attack: new captures

Surprise: all requests made by the board computer and apps

are in clear HTTP...

73

Client-side attack: sweets

74

Opportunities

Remember the Android version is 4.0.4:

Some apps perform web requests → JavaScript Interface

RCE

Other request XML files → XXE attacks

And all other CVE to replay!

75

Spotted API

Very similar to mobile app API calls! But no “OAuth” token?!

76

API: “Mobile app” VS “Cars/others...”

Mobile APP

open and close car door

start/stop the clim

all of these actions are

authentified → OAuth, etc.

uses HTTPS → well

verified by default on new

Android device

Cars and others

open and close car door

start/stop the clim

talks on HTTP

sometimes use only SMS

messages

use only identification

payload are sometimes

encrypted with a same

shared key

rare cases: mutual

authentication (expecially

on external dongles)

In most cases car board computers needs to be reversed

77

Interception in a parking station

> 10 board computers collected in the fake base station

78

Read more about this

Our blog post: Hunting mobile devices endpoints

More stuff could be found on other systems...

Other case: The ComboBox in BMW

https://www.heise.de/ct/artikel/Beemer-Open-Thyself-

Security-vulnerabilities-in-BMW-s-ConnectedDrive-

2540957.html

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

79

XTRX

mPCI-e

perfect for embeded radio

osmoTRX is not well

supported at the moment,

but patience!

fit perfectly on APU2, UP2

and Orange PI rk3399

boards

80

APU2 example

1 Requirements

2 Attracting mobile devices

3 Capturing mobile data of a famous intercom in France

4 Hard way

5 Other interesting targets

6 Other interesting targets

7 The futur

8 conclusion

81

Conclusion

A lot of IoT devices use the mobile network to be managed

in remote

Mobile interception techniques could be applied on IoT

device

Techniques are accessible → equipments, tools and tricks

are not so expensive

Modmobmap and Modmobjam → when physical accesses

are not possible on targeted devices

But some devices only have a 3G or a LTE stack

Interceptions on UMTS and LTE requires a custom (U)SIM

(unless there is a missing auth check in BB)

Hardware hacking → complementary but also a last

ressort sometimes

82

Downloads

Modmobmap:

https://github.com/Synacktiv/Modmobmap

Modmobjam:

https://github.com/Synacktiv/Modmobjam

83

Thanks =)

Joffrey Czarny (@_Sn0rkY)

Priya Chalakkal (@priyachalakkal)

Rachelle Boissard (@rachelle_off)

Troopers staff (@WEareTROOPERS)

Guillaume Delugré (@lapinhib0u) → spotting few mistakes

in slide 3

And of course → You all ;)

THANK YOU FOR YOUR ATTENTION,

ANY QUESTIONS?

	Introduction
	Requirements
	Attracting mobile devices
	Capturing mobile data of a famous intercom in France
	Hard way
	Other interesting targets
	Other interesting targets
	The futur
	conclusion

