
Modmobtools

Internals, updates and more

By Sébastien Dudek

Troopers - Telco Sec Day

March 19th 2019

About me

Sébastien Dudek

(@FlUxIuS)

Working at Synacktiv:

pentests, red team, audits,

vuln researches

Likes radio and hardware

And to confront theory vs.

practice

Introduction

Pentesting mobile devices (phones, intercoms, connected

cars, ...) → right tools

Data exchanged: (IoT) devices ↔ server are generally

trusted

Spawn a fake station → OpenBTS/OsmoBTS,

OpenBTS-UMTS, srsLTE, Amarisoft...

But we need also to attract the device to this station

Also sometimes it’s needed to perform cell monitoring on

2G/3G/4G and soon in 5G.

→ we developped some cool&cheap tools to do that!

3

Our tools

Modmobmap: monitoring 2G/3G/4G cells and more

Modmobjam: smart/targeted jamming tools

1 Modmobmap

2 Modmobjam

3 Updates

4 Conclusion

4

Where can I use this tool?

Cell towers discovery

have a list and description of surrounding towers

spot rogue base stations (mature list required!)

Jamming

4

Where can I use this tool?

Cell towers discovery

Jamming

replace the noisy chineese jammer

avoid commercial jamming device reworking (bands

disabling)

5

Remember: monitoring with holy relics

Old Nokia phone have a net monitor mode that could be

enabled via FBus or MBUS access.

Tools

Gnokii, Gammu and

others: activate monitor

mode, interact with the

phone, and capture trace

logs.

DCT3-GSMTAP: evolution

of Gammu, capture of

GSM Um and SIM-ME via

GSMTAP pseudo-header

format.

6

Thing that exists

OpenCellID example

Very few information... could be used as a database for

spotting rogue base stations. But useless for jamming attacks

7

Thing we wanna do for 3G, 4G and more

OsmocomBB cell monitor

8

Public tools

Recorded mobile towers

OpenCellid: Open Database of Cell Towers

Gsmmap.org

and so on.

Live scanning tools

8

Public tools

Recorded mobile towers

OpenCellid: Open Database of Cell Towers

Gsmmap.org

and so on.

Problem!

But these solutions don’t map in live and do not give precise

information about cell towers.

Live scanning tools

8

Public tools

Recorded mobile towers

Live scanning tools

for 2G cells:

Gammu/Wammu, DCT3-GSMTAP, and others

OsmocomBB via cell_log application

for 3G, 4G and more:

only tricks: use of exposed DIAG interface→decoding

→GSMTAP pseudo-header format

SnoopSnitch: could be reworked for our purposes ;)

9

Methods to capture cells information

Possible methods are:

Software-Defined Radio

Exposed diagnostic interfaces

Use of Android RIL

10

Software-Defined Radio

Existing tools:

Airprobe or GR-GSM

OpenLTE: LTE_fdd_dl_scan

srsLTE with srsUE

10

Software-Defined Radio

Existing tools:

Airprobe or GR-GSM

OpenLTE: LTE_fdd_dl_scan

srsLTE with srsUE

No 3G

No 3G tools to capture cell information.

11

Exposed diagnostic interface

Diagnostic interface enabled:

On old phones and 3G sticks like the Icon 2551 that expose

it by default

enabling DIAG ourselves: e.g for some LG devices via

/sys/devices/platform/lg_diag_cmd/diag_enable

Chips used for development

Interfaces kept enabled in production by error (e.g via

custome bootmodes →CVE-2016-8467)

Existing tools:

xgoldmon for X-Gold Infineon Basebands

diag-parser for exposed Qualcomm DIAG interfaces

1https://events.ccc.de/congress/2011/Fahrplan/attachments/2022_11ccc-

qcombbdbg.pdf

12

Making a development environment

Good alternative

Could work with almost all bands we want

A little expensive: almost 300€

Requirements:

EC20 LTE modem PCengines APU2

13

Supertramp’s version

U/EC20 3G/LTE modem

mPCI-E adapter

14

(Funny story about EC20)

Seen at 33c3 by Harald Welte2 →the modem runs an OE

base Linux distribution

It’s also possible to have a shell via the AT command

AT+QLINUXCMD:

echo −e ’AT+QLINUXCMD= ” / sb in / ge t t y −L ttyGS0 115200 console ” \ r \ n ’ > / dev / ttyUSB2

microcom / dev / ttyUSB1

OpenEmbedded Linux 9615−cdp ttyGS0

msm 20160923 9615−cdp ttyGS0

9615−cdp l og i n : roo t

Password : oel inux123

root@9615−cdp :~#

2http git.gnumonks.org/laforge-

slides/plain/2016/cellular_modems_33c3/33c3modems.html

15

RIL on Android

Daemon forwards

commands/messages:

application �Vendor RIL

vendor library is prorietary

and vendor specific

vendor library knows how
to talk to modem:

classic AT

QMI for Qualcomm

(old?) Samsung IPC

Protocol

and so on.

16

ServiceMode on Android

Usually activated by typing

a secret code

Gives interesting details of
current cell:

implicit network type

used band

reception (RX/DL)

or/and transmission

(TX/UP) (E/U)ARFCN

(Absolute Radio

Frequency Channel

Number)

PLMN (Public Land

Mobile Network) number

and so on.

ServiceMode in Samsung

17

Samsung ServiceMode in brief

1 *#0011# secret code handled by ServiceModeApp_RIL

ServiceModeApp activity

2 ServiceModeApp →IPC connection

→SecFactoryPhoneTest SecPhoneService

3 ServiceModeApp starts the service mode

→invokeOemRilRequestRaw() through SecPhoneService

(send RIL command RIL_REQUEST_OEM_HOOK_RAW)

4 ServiceModeApp process in higher level ServiceMode

messages coming from RIL.

Best place to listen ServiceMode

Two good places exist: RIL library independent of Vendor RIL

library implementation, or use invokeOemRilRequestRaw()

18

Getting SM messages: the lazy way

Ask to our best friend →logcat

she l l@k l te : / $ l ogca t

[. . .]

I / ServiceModeApp_RIL (1542) : i n QUERT_SERVM_DONE

I / ServiceModeApp_RIL (1542) : s i ze o f r e s u l t : 1700

I / ServiceModeApp_RIL (1542) : L ine 0 : RRC: IDLE , Band :1_

I / ServiceModeApp_RIL (1542) : L ine 1 : PLMN:208−20_

I / ServiceModeApp_RIL (1542) : L ine 2 : RX:10639 RI:−70 CID :1 fc09bd_

I / ServiceModeApp_RIL (1542) : L ine 3 : TX:9689 EcIo:−4 RSCP:−74_

I / ServiceModeApp_RIL (1542) : L ine 4 : L1 : PCH_Sleep PSC:83 DRX:64_

I / ServiceModeApp_RIL (1542) : L ine 5 : SERVICE : LIMITED_

I / ServiceModeApp_RIL (1542) : L ine 6 : Speech VER : FR FR FR_

I / ServiceModeApp_RIL (1542) : L ine 7 : therm : 111 LNA: 0 _

I / ServiceModeApp_RIL (1542) : L ine 8 : SIB19 Received_

I / ServiceModeApp_RIL (1542) : L ine 9 : PA STATE : 0 (APT) , HDET : 0_

I / ServiceModeApp_RIL (1542) : L ine 10 : NETWORK : UNBLOCK_

I / ServiceModeApp_RIL (1542) : L ine 11 : IMEI Ce r t i : PASS, 1_

Those messages could be then processed to get our current

cell information.

19

Getting data from DIAG with Xgoldmon

We have reworked Xgoldmon project for that:

https://github.com/FlUxIuS/xgoldmon

$ cat . / c e l l l o g . f i f o

[. . .]

[Ce l l I n f o] :PLMN=208−15;RAC=0x1 ;LAC=0x4e71 ; CID=0x1f * * * * ;DL_UARFCN=10737;UL_ARFCN=9787
[Ce l l I n f o] :PLMN=208−20;RAC=0x1 ;LAC=0x4e71 ; CID=0x1f * * * * ;DL_UARFCN=2950;UL_ARFCN=2725
[. . .]

[Ce l l I n f o] :PLMN=208−20;RAC=0x1 ;LAC=0xb5aa ; CID=0x97 * * * * ;DL_UARFCN=10639;UL_ARFCN=9689
[Ce l l I n f o] :PLMN=208−10;RAC=0x1 ;LAC=0xb5aa ; CID=0x97 * * * * ;DL_UARFCN=65535;UL_ARFCN=2850
[. . .]

20

What do I need?

At least a phone supporting ServiceMode!

At least supports following tested phones:

Samsung Galaxy S3 via xgoldmon (Modmobmap’s edition);

Samsung Galaxy S4;

Samsung Galaxy S5;

Samsung Galaxy Note 2 with LTE;

Samsung Galaxy S4 GT-I9500

Samsung Galaxy Nexus GT-I9250

Samsung Galaxy S2 GT-I9100

Samsung Galaxy Note 2 GT-N7100

Samsung Galaxy S6 Exynos SoC

Samsung Galaxy S7 Exynos SoC

Samsung Galaxy A3 Exynos SoC

...

21

Few contraints to resolve

“KTHX! But there are 2 questions”:

1 how to support other operators than your own SIM card?

2 how to enumerate cells a MS (Mobile Station) is supposed

to see?

21

Few contraints to resolve

“KTHX! But there are 2 questions”:

1 how to support other operators than your own SIM card?

2 how to enumerate cells a MS (Mobile Station) is supposed

to see?

Answer

The DFR technique!

22

DFR technique

D.F.R: “D” for Dirty, “F” for

Fuzzy, “R” for Registration

23

The camping concept in brief

Let’s remember 3GPP TS 43.022, ETSI TS 125 304...

When selecting a PLMN →MS looks for cells satisfying few

conditions (cell of the selected PLMN, not barred, pathloss

between MS and BTS below a thresold, and so on.)

Cells are checked in a descending order of the signal

strength

If a suitable is found →MS camps on it and tries to register

23

The camping concept in brief

Let’s remember 3GPP TS 43.022, ETSI TS 125 304...

When selecting a PLMN →MS looks for cells satisfying few

conditions (cell of the selected PLMN, not barred, pathloss

between MS and BTS below a thresold, and so on.)

Cells are checked in a descending order of the signal

strength

If a suitable is found →MS camps on it and tries to register

Verified through DIAG and ServiceMode

If registration fails →MS camps to another cell until it can

register →verified via DIAG and ServiceMode

24

Automate the DFR technique with AT

commands

Android phones often expose a modem interface (e.g.
/dev/smd0)

127| she l l@k l te : / $ getprop r i l d . l i b a r g s

−d / dev / smd0

It is possible to:

set network type: AT^SYSCONFIG

list PLNM and select a PLMN: AT+COPS

→requires root privileges

25

We mix all techniques together

26

Don’t forget...

*the magic cure powder

27

Here is the frankenstein: Modmobmap

1 Modmobmap

2 Modmobjam

3 Updates

4 Conclusion

28

In brief

Uses Modmobmap results to jam mobile cells in a DIY way!

Cheapest and efficient tricks to jam

29

Before

With a portable/chineese device

cheap

jam the whole 2G/3G/(4G?) bands but requires some

modifications

poor signal

Desktop jammers

29

Before

With a portable/chineese device

Desktop jammers

heavy, cumbersome but powerfull

also needs a disabling to conserve rogue cells

30

Software-Defined Radio way

With Software-Defined Radio

Many devices could be used even the cheapest:

bladeRF;

HackRF;

ADALM-PLUTO;

and so on.

30

Software-Defined Radio way

With Software-Defined Radio

Many devices could be used even the cheapest:

bladeRF;

HackRF;

ADALM-PLUTO;

and so on.

The bandwidth

KTHX! But how do you cover all frequencies with your toys bro?

31

SDR specs

source: http://www.taylorkillian.com/2013/08/sdr-showdown-hackrf-vs-bladerf-vs-usrp.html

32

Solution: ”Smart” jamming

In 3 steps:

1 scan cells with Modmobmap;

2 target an operator;

3 and jam only targeted channels;

33

Scanning with Modmobmap

Modmobmap recovers 2G/3G/4G and more cells pretty much

like OsmocomBB monitor mode for 2G only.

34

Results

JSON file → needed cells information to be reused with other

tools, like Modmobjam!

{

”4b***−76”: {

”PLMN” : ”208−10” ,

” a r f cn ” : 76 ,

” c id ” : ”4b * * ” ,
” type ” : ”2G”

} ,

”60****−2950”: {

”PLMN” : ”208−20” ,

”RX” : 2950 ,

”TX ” : 2725 ,

” c id ” : 60*** ,
” band ” : 8 ,

” type ” : ”3G”

} ,

[. . .]

}

35

GnuRadio: playing with blocks

GnuRadio companion is really nice →can add, make, and

remove blocks →generates Python code

Perfect to build the bases of our jammer. But we still need an

idea of how to design the schema.

36

After many years of research...

Lot of experiments with blocks != #blockchains... blablabla

37

The formula

We have finally found THE formula!

38

Experimentation with GnuRadio

So we’ve started with a simple schema:

But still needed some work...

39

Final product: Modmobjam

40

Results with a simple HackRF

Works pretty well when downgrading a call from 3G to 2G

But the number of cells to jam could raise the number of

needed SDR devices.

41

Go cheaper

Could also be cheaper using OsmoFL2k

TODO

Some work is required target specific frequencies →right sample

rate, carrier frequency and harmonics + better ant & amp

1 Modmobmap

2 Modmobjam

3 Updates

4 Conclusion

42

Next updates

Add RSSI when possible

Add support of mPCI-E modems with exposed DIAG

Add more mobile phone supports → based on SCAT tool

And more! → add also your contribution

43

Getting data from exposed DIAG on mPCI-E

modems

Just use diag-parser tool from Moiji Mobile

The rest could be parser with pycrate_mobile library of Benoit

Michau →ASN.1 and CSN.1 compilers included for our

purposes (RRC, and so on)!

44

tshark with Wireshark dissectors

But in the train for Troopers, I got lazy:

Launch diag-parser and output result in a FIFO file:

$ sudo . / d iag_parser −g 127.0 .0 .1 −p / tmp / f i f o i n − i / dev / ttyUSB0 −vvv

and dissect all LTE and UTRA_FDD carrier list:

cat / tmp / f i f o i n | t shark −i−− l −n −T json −e gsmtap . a r f cn −e l t e _ r r c

−e l t e−r r c . trackingAreaCode −e l t e−r r c . c e l l I d e n t i t y −e l t e−r r c . q_RxLevMin

−e l t e−r r c . f reqBand Ind ica to r −e l t e−r r c .MCC_MNC_Digit

−e l t e−r r c . carrierFreqListUTRA_FDD

−e l t e−r r c . ca r r i e rF req −e l t e−r r c . i n t e rF r eqCa r r i e rF r eqL i s t −e l t e−r r c . d l_Car r i e rF req

−e l t e−r r c . q_RxLevMin −e l t e−r r c . physCe l l Id −Y ’ gsmtap . a r f cn !=0 ’ > / tmp / f i f o o u t

45

tshark result

tshark gives us a nice JSON render:

{

” l aye rs ” : {

” gsmtap . a r f cn ” : [” 6 200 ”] ,

” l t e _ r r c ” : [” l t e _ r r c ”] ,

” l t e−r r c . trackingAreaCode ” : [” 7 5 : c2 ”] ,

” l t e−r r c . c e l l I d e n t i t y ” : [” 7 a :2a : 2 0 : 8 0 ”] ,

” l t e−r r c . f reqBand Ind ica to r ” : [” 2 0 ”] ,

” l t e−r r c .MCC_MNC_Digit ” : [” 2 ” , ” 0 ” , ” 8 ” , ” 2 ” , ” 0 ”] ,

” l t e−r r c . q_RxLevMin ” : [”−61”]

}

}

}

[. . .]

{

” l aye rs ” : {

” gsmtap . a r f cn ” : [” 6 200 ”] ,

” l t e _ r r c ” : [” l t e _ r r c ”] ,

” l t e−r r c . i n t e rF r eqCa r r i e rF r eqL i s t ” : [” 3 ”] ,

” l t e−r r c . d l_Car r i e rF req ” : [” 1850 ” , ” 3175 ” , ” 251 ”] ,

” l t e−r r c . q_RxLevMin ” : [”−63” ,”−62” ,”−63”] ,

” l t e−r r c . physCe l l Id ” : [” 1 5 8 ”]

}

}

}

[. . .]

” l t e−r r c . ca r r i e rF req ” : [”10639” , ”10688” , ”10664” , ”2950”]

[. . .]

46

DIAG for the rock!

Less abstracted data

Carrier lists → catch a bunch of 3G and LTE DL freqs in

the same time

More optimized for mobile monitoring and attacks...

Support with the tshark JSON output will be comitted soon

Another support with pycrate_mobile to parse RRC

messages → in the TODO stack!

1 Modmobmap

2 Modmobjam

3 Updates

4 Conclusion

47

Conclusion

Modmobmap:

is a cheap way to scan mobile cells
supports 2 useful interfaces:

ServiceMode;

host DIAG (could be easily extended for guest DIAG);

srsLTE and OpenLTE captures soon...

Modmobjam:

is a cheap way to jam mobile cells with only a phone and a

HackRF

but if cells to jam are important more SDR devices are

needed

48

Downloads

Modmobmap:

https://github.com/Synacktiv/Modmobmap

Modmobjam:

https://github.com/Synacktiv/Modmobjam

49

Thanks =)

Joffrey Czarny (@_Sn0rkY)

Priya Chalakkal (@priyachalakkal)

Troopers staff (@WEareTROOPERS)

And of course → You all ;)

THANK YOU FOR YOUR ATTENTION,

ANY QUESTIONS?

	Introduction
	Modmobmap
	Modmobjam
	Updates
	Conclusion

