
SQL injection in
Image Intense <= 3.2.5

Security advisory
2018-08-24

Julien Legras
Thomas Chauchefoin

www.synacktiv.com 5 rue Sextius Michel 75015 Paris

Vulnerability description

Presentation of Image-Intense
“Image Intense is an astonishing hybrid mix of 3 native Divi modules for a truly compelling, superfly UI/UX experience on
your website. Comes with 22 different overlay and hover effects plus a multitude of image, text and button options to give
you a brand new world of possibilities for your images.”1

The issue
Synacktiv discovered that the WordPress plugin Image Intense does not correctly sanitize user-controlled data before using it
in SQL queries while handling the shortcode et_pb_image_n10s. Thus, an attacker could abuse the affected feature to
alter the semantic original SQL query and access sensitive database records.

It should be noted that the attacker must be able to create pages / articles on the instance (Contributor, Author, Editor or
Administrator) to reach the vulnerable code path.

Mitigation
Such code patterns:

$sql = "SELECT ID FROM `" . $table . "` WHERE guid='" . $site_url . $image_url . "';";
$attachment = $wpdb->get_col($sql);
Should be replaced by calls to $wpdb->prepare, where all the parameters of the SQL query are passed as second
argument, as shown in the following example:

$attachment = $wpdb->get_results($wpdb->prepare("SELECT ID FROM {$table} WHERE guid =
%s;"), $site_url . $image_url);

Affected versions
The last version at the time of this advisory, 3.2.5, is known to be affected.

Timeline

Date Action

2018-07-16 Advisory sent to BeSuperFly.

2018-07-17 The editor does not consider it to be a vulnerability.

2018-08-24 Publication of the advisory.

1 https://besuperfly.com/product/image-intense-plugin/

 2/3

https://besuperfly.com/product/image-intense-plugin/

Technical description and proof-of-concept
The Image Intense WordPress plugin allows authors to include images in posts and pages using the Divi builder. Behind the
scenes, the build only uses shortcodes that will be processed by Image Intense. However, when such a shortcode is
processed, the src attribute is used without any sanitization and passed to get_image_url_by_size:

function shortcode_callback($atts, $content = null, $function_name) {
 $module_id = $this->shortcode_atts['module_id'];
 $module_class = $this->shortcode_atts['module_class'];
 $src = $this->shortcode_atts['src'];
...
 $src_available = '';
 if ('full' != $size) {
 $src_available = $this->get_image_url_by_size($src, $size);

 if ('' != $src_available) {
 // Found a match on media size
 $src = $src_available;
 }
 }
The get_image_url_by_size function uses directly the first parameter in the SQL statement:

private function get_image_url_by_size($image_url, $size) {
...
 $sql = "SELECT ID FROM `" . $table . "` WHERE guid='" . $image_url . "';";

 $attachment = $wpdb->get_col($sql);
 // If the media size was not found, let's try using the full attachment URL to find the
right GUID
 if (!isset($attachment) || $attachment == false) {
 $site_url = site_url();
 $sql = "SELECT ID FROM `" . $table . "` WHERE guid='" . $site_url . $image_url
. "';";

 $attachment = $wpdb->get_col($sql);
 }
Using a src attribute value aiming to alter the original query, it is possible to trigger the SQL injection when a user displays
the post or page. For instance, the following payload will call the MySQL SLEEP method for 10 seconds:

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_image_n10s
_builder_version="3.0.82" src="test' OR SLEEP(10) -- " size="azaz"
/][/et_pb_column][/et_pb_row][/et_pb_section]
It should be noted that the size attribute must not be equal to full to reach the vulnerable code path.

Impact
A successful exploitation could allow an attacker authenticated with a role allowing him to create posts or pages to extract
records from the database and, depending on the DBMS’ permission scheme, access other databases or the local
filesystem.

 3/3

	Vulnerability description
	Presentation of Image-Intense
	The issue
	Mitigation
	Affected versions
	Timeline

	Technical description and proof-of-concept
	Impact

