
Date 26/02/2020

Place Zytho

By Jiss – Daniel – Tiana

Bière sécu Bordeaux
1st event

Date 26/02/2020

Place Zytho

By Jean-Christophe Delaunay

Combining static and dynamic
binary analysis

ret-sync

3 / 29

Context

 2 approaches in reverse-engineering (RE) :
 static (disass/decompile) IDA, Ghidra, etc.
 dynamic (debug) x64dbg, WinDbg, LLDB, etc.

 Possible to combine both worlds in the
same tool…

 … but often painful to use (eg. IDA dbg)

 Annoying to switch between multiple tools

4 / 29

Context

 Classical example:
 I’m debugging using WinDbg, I spot a routine or structure which

seems interesting
 I’d like to know if I’ve already documented it within IDA
 … I need to compute the offset from the load address of my

module (ASLR/relloc)
 … add it to the preferred load address of my module in my idb

 Conclusion: straightforward but painful if I have to do that every 2
minutes

 … even more painful provided that I use x64dbg for usermode
and WinDbg for kernelmode

5 / 29

Solutions

 Code a new tool which would combine
both worlds…

6 / 29

Solutions

 Code a new tool which would combine
both worlds…

7 / 29

Solutions

 Code a new tool which would combine
both worlds…

 Set-up a glue which would create an
interface between the disass and the
debugger(s)…

 … ret-sync by Alexandre Gazet

 https://github.com/bootleg/ret-sync

8 / 29

ret-sync: support

 Static:
 IDA
 Ghidra

 Dynamic:
 WinDbg(-preview)
 GDB
 LLDB
 OllyDbg 1.10
 OllyDbg v2
 x64dbg

9 / 29

ret-sync: features

 Permits to “follow” the program workflow in IDA/Ghidra view
 “step” in the dbg “step” in the disass static view

 Dynamic switching between multiple idbs
 trace within toto.exe trace within toto.idb
 toto.exe issues a call in fistouille.dll switch to fistouille.idb

 Automagical rebase

 Sending commands to the dbg (bp, hbp, lbl, etc.)

 Custom commands

 All features are available both in disass AND decompiled
views

 etc.

the complete list is documented on the project’s github

1

1

10 / 29

ret-sync: design

 Clients/servers scheme

 IDA plugin (focus in this presentation):
 broker (client)
 dispatcher (server)

 (Ghidra plugin: uses the built-in
ProgramManager)

 debuggers’ plugin: client

11 / 29

ret-sync: design

12 / 29

ret-sync: IDA side

 Creates a window dedicated to the plugin configuration through Qt

 Registers some events :
 QtWidgets.QCheckBox
 QtWidgets.QpushButton
 etc.

 which register some callbacks :
 self.cb_sync.stateChanged.connect(self.cb_change_state)
 self.cb_hexrays.stateChanged.connect(self.cb_hexrays_sync_state)
 self.btn.clicked.connect(self.cb_btn_restart)

 Defines hotkeys

 Defines some command lines options

 Check if the permanent “.sync” configuration file exists

13 / 29

ret-sync: IDA side

 Creates a window dedicated to the plugin configuration through Qt

 Registers some events :
 QtWidgets.QCheckBox
 QtWidgets.QpushButton
 etc.

 which register some callbacks :
 self.cb_sync.stateChanged.connect(self.cb_change_state)
 self.cb_hexrays.stateChanged.connect(self.cb_hexrays_sync_state)
 self.btn.clicked.connect(self.cb_btn_restart)

 Defines hotkeys

 Defines some command lines options

 Check if the permanent “.sync” configuration file exists

14 / 29

ret-sync: IDA side

self.cb_sync.stateChanged.connect(self.cb_change_state)

 init_broker()
 Instanciates a “Broker” class creates a worker

(“RequestHandler” class)
 Launches “broker.py” script

15 / 29

ret-sync: design

16 / 29

ret-sync: IDA side

 Broker

 Historically coded in order to compensate the lack of QtNetwork

 Is a QtCore.Qprocess

 Registers some callbacks

 self.error.connect(self.cb_on_error)
 self.readyReadStandardOutput.connect(self.cb_broker_on_o

ut)
 self.stateChanged.connect(self.cb_broker_on_state_change)

 Handles asynchronous messages

17 / 29

ret-sync: IDA side

 Broker

 Historically coded in order to compensate the lack of QtNetwork

 Is a QtCore.Qprocess

 Registers some callbacks

 self.error.connect(self.cb_on_error)
 self.readyReadStandardOutput.connect(self.cb_broker_on_o

ut)
 self.stateChanged.connect(self.cb_broker_on_state_change)

 Handles asynchronous messages

18 / 29

ret-sync: IDA side

 Broker

 Retrieves everything written to stdout and gives it to
the worker to be parsed

19 / 29

ret-sync: design

20 / 29

ret-sync: IDA side

 RequestHandler

 “Worker” which addresses all data transmitted to it by the Broker

 Handles all actions related to IDA side:

 Disass dbg (go, step, bp, lbl, comment, etc.)
 Dbg disass (update view, enable/disable, colors, etc.)

 Custom messages exchanged formatted in JSON
{"type":"broker","subtype":"msg","msg":"connected to dispatcher"}

{"type":"broker","subtype":"notice","port":"49678"}

{"type":"dialect","dialect":"windbg"}

{"type":"broker","subtype":"enable_idb"}

{"type":"loc","base":9223363323289862144,"offset":9223363323290320023}

21 / 29

ret-sync: design

22 / 29

ret-sync: broker.py

 Instanciates a “BrokerSrv” class:
 server.bind() binds to localhost
 server.notify() run_dispatcher()
 server.loop()

 A single instance per idb

23 / 29

ret-sync: broker.py

 Instanciates a “BrokerSrv” class:
 server.bind() binds to localhost
 server.notify() run_dispatcher() launches

the “dispatcher.py” server, if not already existing,
then connects to it while transmitting the
corresponding idb name

 server.loop()

 A single instance per idb

24 / 29

ret-sync: design

25 / 29

ret-sync: dispatcher.py

 Instanciates “DispatcherSrv” class:
 bind() binds to HOST:PORT (from “.sync” file or default)
 loop()

 loop() waits for incoming messages:
 Brokers (idbs)
 Debugger(s)

 Dedicated methods depending on requests’ types:
 req_new_client
 req_new_dbg
 req_dbg_quit
 req_sync_mod
 etc.

 Finds the idb matching the module currently debugged (switch_idb())

 A single global instance

26 / 29

ret-sync: design

27 / 29

Ret-sync: debuggers views

 Specific to each debugger

 Connects to the dispatcher

 Sends messages (command “step”,
command “!sync”, module name, etc.)

 Retrieves messages from the dispatcher
(“step”, “bp”, etc.)

28 / 29

DEMO TIME!Demo time!

THANK YOU FOR YOUR
ATTENTION,

Do you have any
questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

