
Presented 09th of February, 2017

To Security Day 2017, Lille

By Thomas Chauchefoin

WordPress Security

Hunting security bugs in a supermarket

2 / 30

() { x;}; echo Content-type :; whoami

 Security ninja @Synacktiv

 What we do:
 Internal / external security assessments
 Red Team
 Code review
 Exploit development
 Formations
 Acrobatic juggling

3 / 30

() { x;}; echo Content-type :; groups

 They are too numerous... We need more
ninjas!

 Internship positions:
 Security assessments framework developer
 0-days hunter
 Automated testing on Android applications

 Pentester positions as well

 Ping us at contact@synacktiv.com

mailto:contact@synacktiv.com

4 / 30

WordWhat?

 Content Management System (CMS) by
Automattic

 Written in PHP
 With 5.2 support enforced (EOL: 6 years ago!)

 179519 lines of code right now (counted by
hand)

 Runs 27% of all websites (source: Wikipedia)
 53,4 % are not using a CMS
 Easy to detect (wp-includes, wp-content, ...)

5 / 30

Security of the core

 Auto-updates are enabled if the permissions on
the folders are correctly set
 Leaks PHP version, MySQL version, blogs count,

users count...

 Fetches the last release from
api.wordpress.com

 You compromise it, you win, nothing’s signed, but
maybe one day... (#39309, #25052)

 Maximal mayhem: block future auto-updates
 Potential RCE on this host was silently patched: “Add

 support [...] documentation.”

https://core.trac.wordpress.org/ticket/39309
https://core.trac.wordpress.org/ticket/25052
https://meta.trac.wordpress.org/changeset/3983/
https://meta.trac.wordpress.org/changeset/3983/

6 / 30

Security of the core

 “Content spoofing” in REST API (< 4.7.2)
 “As part of a vulnerability research project […] on

WordPress, we discovered was a severe content
injection (privilege escalation) vulnerability
affecting the REST API.”

 “We disclosed the vulnerability to the WordPress
Security Team who handled it extremely well.
They worked closely [...] security providers aware
and patched before this became public.”

 “A fix for this was silently included on version
4.7.2 along with other less severe issues.”

7 / 30

Security of the core

 MySQL’s utf8 ≠ utf8mb4

 Without the strict mode, it’ll truncate the value
before insertion...

 ...but your server-side check will be performed
on the whole string

 Insert two comments to form a new tag:
 <q cite=‘xx
 ’ onmousehover=‘...’>

 14 months to fix the vulnerability (4.1.2)

8 / 30

Extending WordPress

 Core can be extended with themes and plugins

 More than 48k plugins, manually reviewed (??)

 Some statistics for each target plugin
 Active installs: 100k+, 200k+, 2M+…
 Download history with real statistics
 Active versions repartition

 WordPress <3 monorepos:
 https://plugins.svn.wordpress.org/
 1.6M ~ revisions and counting, you can’t just clone it

https://plugins.svn.wordpress.org/

9 / 30

So what?

 The facts
 More than one million source code files
 Written in PHP, with 5.2 support in mind
 Mostly developed by individuals, small agencies
 They will can do things wrong, grep it!

10 / 30

A10: Open redirects

 wp_redirect() vs wp_safe_redirect()

 Host checking
 Always prevents response splitting
 Works with data://, for all your phishing fantasies

 Mostly useful when chained with other vulnerabilities

 Not always vulnerable, more especially when getting
prefixed
 get_bloginfo('url')

 exit() and let die()

11 / 30

A09: Vulnerable components

 PHPMailer

 84 occurrences of the class in all the plugins
 Not directly exploitable
 Already bundled by WordPress

 php-jwt

 5 occurrences of the class

 Core dependencies are not handled with
composer

12 / 30

A08: Cross-Site Request Forgeries

 Per-request nonces
 Not one-time use (even if it’s called a nonce)
 Tied to one user, action, session, window of times
 Depends of NONCE_SALT, NONCE_KEY
 wp_nonce_field(), wp_verify_nonce()

 Check the referrer too!

 Hard to grep for, need a better idea

13 / 30

A07: Missing Function Level
Access Control
 What’s the purpose of is_admin()?

 What’s the purpose of is_user_admin()?

 What’s the purpose of is_super_admin()?
 current_user_can(cap1, cap2…)

 AJAX endpoints are often missed:

 Call it at /wp-admin/admin-ajax.php?action=

 wp_ajax_* / wp_ajax_nopriv_*

 add_action()

14 / 30

A06: Sensitive data exposure

 A lot of administrative plugins are “doing the
things wrong. Sad!”.
 Wrong permissions / extensions on the files
 Predictable paths / names
 LFI / AFD

 Directory listing on the download folder may
help

 Be restrictive with your exotic parsers

15 / 30

A05: Security misconfiguration

 “put your unique phrase here”
 It may call https://api.wordpress.org/secret-

key/1.1/salt/—not funny.
 CA bundle: ## Includes a WordPress Modification -

We include the 'legacy' 1024bit certificates for
backward compatibility. See
https://core.trac.wordpress.org/ticket/34935#commen
t:10 Wed Sep 16 08:58:11 2015

 Still includes WoSign and Startcom, now removed
from Mozilla’s list

 Bake smelly authentication cookies

16 / 30

A05: Security misconfiguration

 But wait, there is a plugin for it!!!

 “Salt Shaker enhances WordPress security by
changing WordPress security keys and salts
manually and automatically.”

 It’s just using file_get_contents on the API
 > PHP5.6: “All encrypted client streams now enable

peer verification by default.”

 It’ll also create a wp-config.php.tmp :^)

17 / 30

A05: Security misconfiguration

 A lot of HTTP calls, everywhere
 Credits
 Importers plugins
 Browser needs update?

 Others are HTTPS, “if supported”

 The WordPress development team made
assumptions like
 Your usernames are public, so their enumeration is OK
 Full path disclosures are a configuration issue, don’t you

run your instance on a dedicated server?

18 / 30

A04: Direct Object Reference

 Don’t circumvent core mechanisms
 get_post()
 get_user_data()
 …

19 / 30

A03: Cross-Site Scripting

 It’s a problem of output encoding, not of
sanitization

 Don’t forget the context:
 JavaScript code,
 HTML attribute,
 Inline content,
 etc.

20 / 30

A03: Cross-Site Scripting

 It’s a problem of validation and output
encoding

 sanitize_*() functions family

 Don’t forget the context
 JavaScript code: esc_js(),
 HTML attribute: esc_attr(),
 Inline content: esc_html(),
 etc.

21 / 30

A03: Cross-Site Scripting

 Sounds lame but It’ll easily lead to server
compromise

 You can bypass nonces and edit files
 Make a request via XHR,
 Extract _wpnonce, _wp_http_referer,

 Send the action=update request to
/wp-admin/theme-editor.php.

 You can also install a malicious plugins, if the
editor is disabled

22 / 30

A02: Broken Authentication and
Session Management
 Hashes are stored in the PHPass format

 14000 hashes/s ~ on my laptop
 Future-proof?

 Everything can be overloaded by plugins,
authentication too

 Cool target functions
 wp_set_auth_cookie()
 wp_login()
 wp_signon()

23 / 30

A01: Injection

 You name it, SQL injections

 Core functions should be safe
 CVE-2017-5611, “Ensure that queries work

correctly with post type names with special
characters”. Yep, that was silently patched too.

 People will still misuse $wpdb

 Common miscomprehension of prepared
statements

 Or even mysql_*()!

24 / 30

A01: Injection

 PHP Object Injections are in da place too

 Serialization: creating a string representation
of the state of the instance of an object

 unserialize(), maybe_unserialize()

 Forget class whitelisting, thanks PHP 5.2

 It much more common than you may think

25 / 30

A01: Injection

 Crafting a popchain
 Find an entrypoint

 __wakeup()
 __destruct()
 __toString()
 __call()
 __set()
 __get()

 No autoloader in Wordpress, but put a breakpoint
and list available classes and methods

26 / 30

A01: Injection

 Crafting a popchain
 Define an objective

 Read the configuration file?
 Delete a file?
 Execute code or commands?

 Identify the needed function, depending of the
objective

 Find a path between two!
 A popchain was presented by Sam Thomas in

2015, abusing translations

27 / 30

A01: Injection

 translations.php

function make_plural_form_function($nplurals, $expression) {
$expression = str_replace('n', '$n', $expression);
$func_body = "

\$index = (int)($expression);
return (\$index < $nplurals)?
\$index : $nplurals - 1;";

return create_function('$n', $func_body);
}

28 / 30

A01: Injection

 Craft the right PO file
 msgid ""

msgstr ""

"Content-Type: text/plain; charset=UTF-8\n"

"Plural-Forms: nplurals = 2; plural =
die(eval($_GET['x']));"

 When unserializing a WP_Theme object, you
can force it to fetch a .mo file over the network
 Not all schemes are supported due to

is_readable(), but FTP is

29 / 30

Conclusion

 Huge attack surface—don’t miss that!

 Monitor new commits on the core for juicy 1days

 Automate everything
 Reporting is the less fun part

 Audit private plugins?

 Do bug bounties :-)
 pluginvulnerabilities.com (if > 100k+ active installs)
 HackerOne, Bugcrowd… you name it

 30

THANKS FOR YOUR ATTENTION!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

