
When 2018/11/29
Where JSecIn
Who Gaetan Ferry
Why For fun!

Code Code Obfuscation 10**2+(2*a+3)%2Obfuscation 10**2+(2*a+3)%2

me@JSecIN:/ $ whoami

 Gaetan Ferry

 @mabo^W Not on twitter

 Security expert @Synacktiv :

 Offensive security company : pentest, red team,
reverse/exploit…

 Pentest team peon:

 1 me / 17 pentester / 41 ninjas

 Breaking things since 2012

 Web, internal, external, IOT, indus, cloud

WE WANT YOU FOR OUR NINJA ARMY !

INTRODUCTION

Why this presentation?

 Why not?

 Obfuscation is an undervalued domain
■ Usefulness often discussed
■ Defined as security by obscurity

 Therefore abandoned

 Therefore unknown
→ We want to redeem obfuscation

What is in this presentation?

 Objectives of a proper obfuscation

 Details of classic obfuscation patterns

 Implementation with / for Python

 Examples and …

…demos (pray demo gods)

WHAT IS OBFUSCATION ?

A bit of theory

Let P be the set of all programs and T a set of transformations such as:

T
i
 : P → P

T
i
 is an obfuscation transformation if and only if:

- out(T
i
(P

k
)) == out(P

k
)

- analysis of T
i
(P

k
) is harder than analysis of P

k

T
i
 is considered efficient if the knowledge of T

i
(P

k
) is equivalent to having a black-box oracle

of P
k.

A bit of theory

Let P be the set of all programs and T a set of transformations such as:

T
i
 : P → P

T
i
 is an obfuscation transformation if and only if:

- out(T
i
(P

k
)) == out(P

k
)

- analysis of T
i
(P

k
) is harder than analysis of P

k

T
i
 is considered efficient if the knowledge of T

i
(P

k
) is equivalent to having a black-box oracle

of P
k.

This is not what we are doing

 Obfuscation does not stand well theory

 Theoretical results are demoralizing
 In general cases obfuscation is impossible
 Some exceptions: point functions

 Let's go with a more pragmatic approach

A more pragmatic approach

 Process of complicating programs
 Take a beautiful well written program
 Transform it in some way
 Retrieve an obscure ugly program

 Two rules to follow
 Resulting program is semantically equivalent
 More difficult to analyze and understand

A more pragmatic approach

 Process of complicating programs
 Take a beautiful well written program
 Transform it in some way
 Retrieve an obscure ugly program

 Two rules to follow
 Resulting program is semantically equivalent
 More difficult to analyse and understand

Why do you want obfuscation?

 Useful for good and bad guys

Why do you want obfuscation?

 Useful for good and bad guys

Protect industrial secrets
Discourage hackers who open the thing

Why do you want obfuscation?

 Useful for good and bad guys

Protect industrial secret
Discourage hackers who open the thing

Bypass sandbox / antivirus detection
Prevent reverse engineering by the good guys

LET'S OBFUSCATE THINGS

How to complicate a program?

 Remove as much information as possible

 Three main directions:
 Abstractions
 Data
 Control flow

 We need to obfuscate each kind

How to complicate a program?

Abstractions

Data

Control flow

LET'S OBFUSCATE ABSTRACTIONS

Program abstractions

 Abstractions help understand programs

→ Imagine a program without proper function names or
convoluted class hierarchy !

 Giveaway much of the program semantic
 Division in semantic blocks
 Role of the blocks

 Sensitive abstractions:
 Variables
 Functions
 Classes

Names obfuscation

 First step of a successful obfuscation
 Remove meaningful names from the code
 Replace with random or unrelated ones

 This information is unrecoverable! \o/

 EZ as 123:
 Search for all declarations functions, variables, class
 Replace at each usage location

Names obfuscation
def power(number, exponent) {

count = number
while (exponent > 1) {

count = count * number
exponent = exponent - 1

}
return count

}

power(2, 10)

Definition
Usage

def toast(number, exponent) {
count = number
while (exponent > 1) {

count = count * number
exponent = exponent - 1

}
return count

}

toast(2, 10)

def toast(bread, butter) {
salad = bread
while (butter > 1) {

salad = salad * bread
butter = butter - 1

}
return salad

}

toast(2, 10)

Going further

 Does not seem sufficient
 Still leaking information
 Program partitioning unchanged

 We should try to break things

 Ideas:
 Function inlining
 Merging / Splitting

 Warning: Beware of introspection calls!

Function merging
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

Function merging
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

def toast(a, b, c, d, e)
{

if (e) {
count = a
while (b > 0){

count += 1
b -= 1

}
return count

} else {
count = 0
while (d > 0){

count += c
d -= 1

}
return count

}
}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

A = 2
B = 3

C = toast(A,B,B,A,true)
D = toast(A,C,C,A,false)

Function merging - smarter
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

def toast(a, b, e) {
if (e) {

count = a
add = 1

} else {
count = 0
add = a

}
while (b > 0){

count += add
b -= 1

}
return count

}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

A = 2
B = 3

C = toast(A,B,true)
D = toast(C,A,false)

(disappointing) DEMO

Before

After

LET'S OBFUSCATE DATA

Program data

 All programs contain data:
 Numbers, strings, arrays, etc

 Often (always) discloses important information:
 Status / debug messages
 Important constants (MD5, AES S-Box, etc)

 We want to hide those nasty values !
 In our example: integers

Program data

 All programs contain data:
 Numbers, strings, arrays, etc

 Often (always) discloses important information:
 Status / debug messages
 Important constants (MD5, AES S-Box, etc)

 We want to hide those nasty values !
 In our example: integers

USE OPAQUE PREDICATES !

Opaque predicates and values

 One of the core concepts of obfuscation

 We want to build expressions for which:
 Value is known at obfuscation time
 At run time value is hard to determine

 When value is a boolean it's a predicate

Opaque predicates – naive idea

Opaque predicates – naive idea

 Open a mathematics course book

 Ctrl + F “demonstrate that“

 Profit

 Examples:
 (n² + n) % 2 = 0
 If n is odd : n² % 8 = 1
 (3 (2n + 2) + 1) % 8 = 2

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand()
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand() * 2 + 1
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

???

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand() * 2 + 1
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

???
def add(a, b){

count = a
while (b > (a² + a) % 2){

n = count*2+1
count += (n)² % 8
b -= n² % 8

}
return count

}

Opaque predicates – naive idea

 Problem:

Smart cat is smart! Smart cat knows mathematics!

 Attacking those predicates is easy:
 Build a collection of mathematics results
 Pattern match known relations
 Replace

 We can do better

Array aliasing

 Let's build our own mathematical results
 Create an array
 Decide properties
 Initialize the array respecting the properties

 Then use the properties like previously

Array aliasing

 Example:

 3 == A[1]%A[4] A[2] == A[5]%A[4]

 1 == A[5]%A[8] A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]

== 3 mod 5 == 1 mod 4

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

Array aliasing

 Still insufficient:
 Global array is static
 Attacker can globally replace values

 We need to bring indecision in!

 Idea: change the array during the program’s execution
 Hard! (e.g. How to know the state in function bodies?)

Array aliasing

 Still insufficient:
 Global array is static
 Attacker can globally replace values

 We need to bring indecision in

 Idea: change the array during the program’s execution
 Hard! (e.g. How to know the state in function bodies?)
 But not if you keep the properties

Array aliasing

 Example:

 3 == A[1]%A[4] A[2] == A[5]%A[4]

 1 == A[5]%A[8] A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
== 3 mod 5 == 1 mod 4

+ A[3] + A[8]

Array aliasing

 Example:

 3 == A[1]%A[4] A[2] == A[5]%A[4]

 1 == A[5]%A[8] A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
== 3 mod 5 == 1 mod 4

+ A[3] + A[8]

A = [25,58,3,5,5,33,17,8,4,1]

OK

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}
add(2,3)

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
add(2,3)

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}
add(2,3)

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[4]+A[7]
add(2,3)

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
add(2,3)

Array aliasing

 Results
 Data now changes at each run
 Function add change

 Guessing the value of add(2,3)
now requires analyzing more
than just the add function

 Result might change at each
call

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[3]+A[7]
c = add(2,3)
A[5]=(A[1]+A[7])%A[3]+A[7]
D = add(2,3)
C == D ???

Array aliasing

 Results
 Data now change at each run
 Function add change

 Guessing the value of add(2,3)
now require analyzing more
than just the add function

 Result might change at each
call

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[3]+A[7]
c = add(2,3)
A[5]=(A[1]+A[7])%A[3]+A[7]
D = add(2,3)
C == D ???

DEMO

Before

After

LET'S OBFUSCATE CONTROL FLOW

Control Flow Graph

 All programs make use of control instructions
– if, while, for, switch, etc

 They define a “Control Flow Graph”
 Composed of test and instructions blocks
 Define which instruction is executed when
 Wise attacker can deduce information of the CFG

 We want to obfuscate that

Control Flow Graph - Example
N = RAND()
C = 2
if (N % 2 == 0) {

while (N > 0) {
C = C * C
N = N - 1

}
} else {

C = 0
}
print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

Control Flow Graph – Naive (?)

 Ideas:
 Add dead branches
 Duplicate branches

 Increases the amount of code to analyze

→ Use opaque predicates !

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N % 4 == 0

C = 1
N % 2 == 0

N = -(- N + 1)
C = C² / C

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N % 4 == 0

C = 1
N % 2 == 0

N = -(- N + 1)
C = C³ / C

Control Flow Graph – Flattening

 Can we do better (i.e. destroy the graph) ?

 Yes! We can flatten the graph
 Technique called Chenxification after Chenxi Wang
 Improved by Lazlo & Kiss

 The idea:
 Replace the whole program by a big switch / case
 Put all instruction blocks in it
 Jump on blocks depending on a control value

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

Control Flow Graph - Example
ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

0

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

Control Flow Graph - Example
ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

0

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

END

 123

DEMO

Before

After

PUTTING IT ALL TOGETHER

Putting it all together

 We have three obfuscation transforms

 We should be able to combine them
 Choose the correct order to maximize efficiency
 Use data obfuscation to mask flattening control
 Optionally iterate some transforms

 Keep in mind the performance impact
 The execution time can increase significantly
 The program size can explode
 Maybe necessary to target sensitive functions

Putting it all together

 Keep in mind the performance loss

SIZE TIME

FLATTENING + 100 % < +10 %

RENAMING +0 % +0 %

ARRAY
ALIASING

x 10 +11 %

DEMO

Before

After

Conclusion

 We achieve a nice looking obfuscation
 Using somehow simple transforms

 But might not hold against advanced analysis
 In particular dynamic analysis

→ Debugging, Symbolic execution, etc

 What about dynamic obfuscation?
→ Self modifying programs, white box crypto, etc

Conclusion

 We achieve a nice looking obfuscation
 Using somehow simple transforms

 But might not hold against advanced analysis
 In particular dynamic analysis

→ Debugging, Symbolic execution, etc

 What about dynamic obfuscation?
→ Self modifying programs, white box crypto, etc

Thank you for your attention

ANY QUESTIONS ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75

