

The return of FAIFA and HomePlugPWN Make Power-Line Communication hacks great again!

By Sébastien Dudek

leHack

July 6th 2019

Working team on the subject

 Xavier Carcelle
 Joffrey Czarny (@_Sn0rkY)
 And myself

Still a lot of work to do!

About me

- Sébastien Dudek (@FlUxluS)
- Working at Synacktiv: pentests, red team, audits, and vuln researches
- Likes radio and hardware
- And to confront theory vs. practice

1 Introduction

- 2 State of the art
- 3 Current attacks
- 4 Attacking HomePlug GP
- 5 Smart Grids
- 6 Non documented things
- 7 Work in progress

Introduction

- PLC: Powerline Communication
- Principle discovered by Edward Davy in 1838
- Released in the early 2000s for home applications
- Evolves a lot in therms of speed

Could be found in various applications.

Applications

Classical: domestic

- Use HomePlug specifications (Ex. HomePlug AV)
 - Extend a local network
- Depending on the context cheaper than buying multiple repeaters
- Generally more reliable than Wi-Fi

Other cases

Applications

Classical: domestic

Other cases

- Electrical counters:
 - Like Cenélec (3-148.5 kHz low voltage) are used : meter readings, intruder alarms, fire detection, gaz leak detection, and so on.
 - Linky G3, G1 specs, etc.
 - But some countries use HomePlug specifications for their counters
- Smart grid \rightarrow recently found in missions
- Home automation
- And so on.

Data propagation: reminders

- AC voltage is 50 Hz \rightarrow a signal do 50 cycles/s
- Could be represented by the formula: $Ps = A\sqrt{2}sin(2\pi ft)$ (f: frequency in Hz; t: time)
- The data (Da) is superposed to this carrier \rightarrow Td = Ps + da

But before being sum to the power supply \rightarrow need error detection, code mapping, multi-carrier modulation

Data propagation: DSP

- 1 data scrambling
- 2 turbo encoding
- 3 modulation of control and data frames
- 4 form OFDM symbols
- 5 windowing
- 6 etc.

Data transmission at home

source: PLC in Practice by Xavier Carcelle

Private vs Public network

source: PLC in Practice by Xavier Carcelle

In reality: no choc-coil \rightarrow no real private network

Data transmission at home

PLC layers

A PLC uses layer 1 and 2 of the OSI model \rightarrow IEEE 802.3

Communications

$\textbf{Computer}\leftrightarrow \textbf{PLC}$

Communicate through Ethernet on MAC layer

Clear text (no ciphering)

$PLC \leftrightarrow PLC$

Communicate through powerline

Data is encrypted (using AES CBC 128 bits on new PLCs)

Everything is defined in HomePlug AV specifications

Interroperability

But also with HomePlug Green PHY

HomePlug AV and GP

Homeplug GP (Green PHY) \rightarrow subset of HomePlug AV

	Parameter	HomePlug AV	HomePlug GP				
РНҮ	Spectrum	2 MHz to 30 MHz	2 MHz to 30 MHz				
	Modulation	OFDM	OFDM				
	# Subcarriers	1155	1155				
	Subcarrier spacing	24.414 kHz	24.414 kHz				
	Supported subcarrier modulation formats	BPSK, QPSK, 16 QAM, 64 QAM, 256 QAM, 1024 QAM	QPSK only				
	Data FEC	Turbo code Rate ½ or Rate 16/21 (punctured)	Turbo code Rate ½ only				
	Supported data rates	ROBO: 4 Mbps to 10 Mbps Adaptive Bit Loading: 20 Mbps to 200 Mbps	ROBO: 4 Mbps to 10 Mbps				

HomePlug GP PHY Simplifications Reduce Cost & Power Consumption

HomePlug AV and Green PHY

- HomePlug Green PHY (HPGP) → subset of HomePlug AV
- HomePlug AV used to extend domestic local network
- HPGP Intended to be used for "smart" grid or other automation systems
- Throughput decreased \rightarrow use of QPSK instead of high order QAM
- HomePlug AV higher peak rate than HomePlug Green PHY

Into the wild

■ Charging connector → Control Pilot line for HomePlug GP transfers

The Combined Charging System connectors

Different types of connectors exist, like IEC 62196 in UE:

- PP: Proximity pilot for pre-insertion signalling
- CP: Control Pilot for post-insertion signalling
- PE: Protective earth
- N: Neutral (single/3 phase AC/DC-mid)
- L1, L2 and L3 three phase AC/DC-mid

HGPG data multiplexed onto the Control Pilot and ground lines

- 3 Current attacks
- 4 Attacking HomePlug GP
- 5 Smart Grids
- 6 Non documented things
- 7 Work in progress

Publication

- Power Line Communications in Practice by Xavier Carcelle \rightarrow a must read!
- HomePlug AV Security Mechanisms by Richard Newman, Larry Younge, Sherman Gavette, and Ross Anderson, published in 2007
- MISC #37 HomePlug Security by Xavier Carcelle
- HomePlugAV PLC: Practical attacks and backdooring, at NoSuchCon 2014, by Sébastien Dudek → introducing a flaw in Direct Access Key (DAK) generation
- V2G Injector: Whispering to cars and charging units through the Power-Line, at SSTIC 2019, by Sébastien Dudek → introducing a new flaw in HomePlug Green PHY

Tools

- **I** plconfig \rightarrow manage PLCs over the network
- FAIFA¹ by Xavier Carcelle (similar to plconfig) → first Open source PLC tool
- Vendors' softwares
- open-plc-utils² by Qualcomm Atheros, published after FAIFA
- Wireshark has a dissector for HomePlugAV, but not for HomePlug GP
- HomePlugPWN³ by Sébastien Dudek: Scapy dissectors for HomePlug AV / GP(new), attack DAK keys and collect HomePlug GP secrets(new)

¹https://github.com/ffainelli/faifa ²https://github.com/qca/open-plc-utils ³https://github.com/FlUxIuS/HomePlugPWN

This presentation

- Remindings: Power-Line Communications and previous found vulnerabilities
- Methodologies to attack those devices nowadays
- A new vulnerability found on the HomePlug Green PHY
- Hidden secrets of HomePlug devices
- New areas of research
- Surprises with the use of HomePlug in power meters :)

3 Current attacks

- 4 Attacking HomePlug GP
- 5 Smart Grids
- 6 Non documented things
- 7 Work in progress

Identification of devices

2 techniques:

- **1** NetworkInfo Req \rightarrow Confirmations \rightarrow Station informations
- 2 Enable Sniff Mode \rightarrow get MME of Central Coordinators (CCo)

A detected CCo = potential AV logical network

But NetworkInfo confirmation messages list stations of the same AVLN only \rightarrow need to be smarter

Detection of HomePlug AV/GP devices with sniff mode

To detect Central Coordinator (CCo) devices \rightarrow same old tricks are still possible:

- Enabling sniff mode with *plcmon.py* provided in HomePlugPWN tool
- 2 See all EVSE that appears as CCo devices reported by Sniff indicate packets

	385 386 1306 1307 1308 1309 1310 1311	75.44 75.44 256.2 256.2 256.2 256.2 256.2 256.2	85626675 87150532 23323007 23467137 23526521 24271742 28308429 32245023	00:c4:1 8 4:1 3 05 1 05 1 05 3 05 3 05	'f:ee:6 :54:14 :54:14 :54:14 :54:14 :54:14 :54:14 5:54:14	10:00 1 30:00 1 1 4 4	Bro 90: Bro 90: 90: 90: 90: 90:	adcast c4:ff: adcast c4:ff: c4:ff: c4:ff: c4:ff: c4:ff:	ee:00 ee:00 ee:00 ee:00 ee:00	0:00 0:00 0:00 0:00 0:00 0:00	HomeP HomeP HomeP HomeP HomeP HomeP HomeP	1. 2 1. 2 1. 1 1. 1 1. 1 1. 1	20 297 21 68 186 186 186	MAC MAC MAC MAC MAC MAC MAC	Management, Management, Management, Management, Management, Management, Management,	Get De Get De Sniffe Sniffe Sniffe Sniffe Sniffe	vice/S vice/S r Requ r Conf r Indi r Indi r Indi r Indi	W Versio est irmation cate cate cate cate cate	on R on C	lequest Confirma	tion	
	1312	256	36240342	7 OF	54.14		90.	c4.ff.	66.0L	9.00	HomeP	1 1	186	MAC	Management	Sniffe	r Indi	cate				
H-	Eromo	1300	186 hv	tes on wi	re (14	188 hi	ts) 1	86 byt	05 03	antured	(1488	hits)	on	int	erface A							
15	Etheri	net II	I, Src:	.es on wi	i4:14 (131. 1	:54:14), Ds	st: 00:	c4:ff:	ee:00:	00 ((00:	c4:ff:ee:00	:00)						
D-	HomeP:	Lug A	/ protoc	01					//							,						
	00 00		6 00	or.		64.4	4 00 0	1 00 01			-	0										
00	10 06	00 h	T EE UU	00 ov 60	6a 82	54 14	4 88 e;	1 00 30 0 fo 00) · ·			· · b										
00	20 00	00 b	0 JZ 00	6b 9c 35	fc b0	10 00	d fa 0'	2 06 00	<u>.</u>	Gmk 5												
0.0	30 00	00 8	f ef 52	f3 2c 18	8c 01	00.00	1 68 63	2 06 01	í	· · · R · . ·	·											
00	40 06	00 0	1 fd 34	30 f4 02	05 02	45 0	3 31 f	4 03 06	ŝ .	40	· · E · 1											
00	50 00		54	14 06 03	fe 09	00 1	3 04 90	c Oa ff	÷.	· · · T · · ·												
00	60 00	TT U	7 00 00	52 82 81	9b 1a	00 00	0 00 00	3 00 00	. 6	· · · R · ·												
00	70 00	00 0	0 00 00	00 00 00	00 00	00 00	0 00 00	3 00 00	. 6													

HomePlug AV and Green PHY keys

2 kinds of keys to manage and encrypt data:

- Network Membership Key (NMK): to encrypt the communication using 128-bit AES CBC
- Direct Access Key (DAK): to remotely configure the NMK of a targeted PLC device over the Power-Line interface

Configuring the NMK

If local → DAK can be empty

remotely the DAK of the targeted device should be included

Attacking the local interface

- Ethernet interface: allowed to perform privileged operations
- If an attacker is on the LAN \rightarrow backdoor the device:
 - Program it's own NMK
 - Replace device's firmware

DAK generation status

- Qualcomm devices had a weak DAK \rightarrow see our research paper presented at NSC 2014⁴
- In Feb 2015: Qualcomm patched their utility, referring to their GitHub:

*	00 -183,25 +190,28 00 static void function (const char * file, unsigned count, unsigned group, unsigne		
		190	A second s
104	**/	191	۱۱/
185		192	
186	-Adofine DEFAULT_COUNT 25	193	+#define DEFAULT_ALPHA 25
	-ddefine DEFAULT_GROUP 5		+Edefine DEFAULT_BUNCH 25
188		195	
189	int main (int args, const char ' argv []]	196	int main (int args, const char ' argv [])
190			
191	(198	t c
			+ extern void (* passwords)(unsigned, unsigned, unsigned, unsigned, unsigned, char, flag_t);
	static const char * optv [] =	200	static const char * optv [] =
	£	201	(
	- "boligrow",		+ "b:l:mqs:rv",
	PUTOPTV_S_FUNNEL,		PUTOPTV_S_FUNNEL,
196	"Atheros device password generator",		"Atheros device password generator",
	 "b n\tbunching factor [" LITERAL (DEFAULT_GROUP) "]", 	205	 "b n\tbunching factor [" LITERAL (DEFAULT_BUNCH) "]",
198	- "1 n/tpassword letters [" LITERAL (DEFAULT_COUNT) "]",	206	 "e\tbase password on host system entropy",
			+ "1 n\tpassword letters [" LITERAL (DEFAULT_ALPHA) "]",
		200	 "m\tbase password on MAC address (less secure)",

But still devices from 2015 and older + chineese and some other devices remain vulnerable

Attacking vulnerable devices

Discover CCo to get a MAC address	s:
-----------------------------------	----

python plcmon.py
[+] Enabling sniff mode
Sent 1 packets.
[+] Listening for CCo station...
Found CCo: 44:94:fc:56:ff:34 (DAK: RMHT-ILPO-TYMN-IIXY)
[...]

Run K.O.DAK attack to reconfigure the NMK remotely:

```
python quickKODAK.py -i eth0 -t 4494fc56ff34 Sent 1 packets.
```

Configure our PLC to connect to the targeted AVLN

We can then use the internet connection (so much QoS than attacking Wi-Fi network), or attack computers in this network.

3 Current attacks

- 4 Attacking HomePlug GP
- 5 Smart Grids
- 6 Non documented things
- 7 Work in progress

Plug-in Electrical Vehicle (PEV) Association

- PEV can be charged everywhere (public, home, etc.)
- It leaves unconfigurated in new AVLN (AV Logical Network)
- So it needs to join the AVLN of the corresponding EVSE once plugged with a charging connector

source: HomePlug Green PHY white paper

But PLC packets are broadcast in the Power-Line...

SLAC procedure

- SLAC: Signal Level Attenuation Characterization
- Aimed to avoid bad association (avoid billing errors, etc)
- Principle:
 - PEV broadcast unacknowledged SOUNDING packets
 - 2 Stations (EVSE) around measure the received power and send it to the PEV
 - 3 PEV finally select the EVSE with the best result
 - 4 Then EVSE provides network (how???)

SLAC procedure (2)

source: HomePlug Green PHY whitepaper

Our contribution

- Developed Scapy layers for HomePlug GP
- Found a new flaw in HPGP SLAC procedure → intrude AVLN of charging station for example

Our first device to test it

dLAN Green PHY eval board EU II \rightarrow multiple interfaces

But cheaper alternative exist

Cheapest way: the wallplug

- Any QCA 7k will do the work
- Ex: Devolo 1200+ works like a charm
- No modification needed if charging stations share the same electrical network
- Otherwise some rework should be done on the coupler

We are actually working on some modular rework with this adaptor

How to interface

With a charging station connector

Where can we find those connectors?

You can really find everything in Alibaba, even charging stations...

HomePlug Green PHY modes

Can be set in 3 specific modes:

Unconfigured

- PEV: can see HPGP specific packets from EVSE
- EVSE: see HGPG specific packets from PEV

Each mode allows or disallow to intercept certain HomePlug GP packets at MAC Layer 2

HomePlug Green PHY modes

Can be set in 3 specific modes:

- Unconfigured
- PEV: can see HPGP specific packets from EVSE
- EVSE: see HGPG specific packets from PEV

Each mode allows or disallow to intercept certain HomePlug GP packets at MAC Layer 2

Warning

Need the correct mode to collect MME packets of a specific device

Changing SLAC mode

Change SLAC mode into PEV modifying byte 0x1653 with "setpib" after dumping it with *plctool*⁵:

\$ setpib PIBdump.pib 1653 byte 1

Then \rightarrow capture packets coming from EVSEs

⁵https://github.com/qca/open-plc-utils

Flaw in the SLAC procedure

When analysing the SLAC procedure \rightarrow surprise!

Ethernet		bc	f2	af	f1	00	03	00	01	85	13	43	11	88	e1	01	7d
dst	6в bc:f2:af:f1:00:03	60	00	00	00	00	56	00	00	00	00	00	00	00	00	00	00
src	6В 00:01:85:13:43:11	00	00	00	00	00	00	00	00	bc	f2	af	f1	00	03	00	00
type	2в 0х88е1	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
HomePlugAV		-00	85 00	00	43 00	00	2b 66	43 af	ee d5	da 61	II Oc	05 f6	a7 07	34 00	00 c8	21	74
version	1в 1.1	d6	03	66	64	72	00	12	78	50	44	45	02	65	00		
HPtype	2в 24701			/		/		- 1									
Reserved	2в 0×0	/	/		/			-/									
CM_SLAC_MATCH_CNF																	
ApplicationType	1в 0	/					/										
SecurityType	1в 0				_	/											
MatchVariableFieldl	_ems 22016			_	_												
VariableField	втв <slac_varfield_cnf[]< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></slac_varfield_cnf[]<>																

It was supposed to be a unicast packet, isn't it? \rightarrow but it is broadcasted in the Power-Line!

Getting keys of AVLNs

By decoding the different fields of the *CM_SLAC_MATCH.CNF* message:

Our PLC can be easily set by changing "slac/pev.ini" profile and used with "pev" tool 6

⁶https://github.com/qca/open-plc-utils

Into the AVLN

- Once part of an AVLN \rightarrow we can talk to every possible device into the same AVLN
- Reach services exposed by devices
- Intercept exchanged data EV \leftrightarrow charging station

41

- Available: https://github.com/FIUxIuS/V2GInjector
- Paper, slides and recording: click here (SSTIC 2019)

- 2 State of the art
- 3 Current attacks
- 4 Attacking HomePlug GP

5 Smart Grids

- 6 Non documented things
- 7 Work in progress

42

HomePlug applied to Smart Grids

- For Smart Grids use HomePlug GP
- Sends UART commands through PowerLine → WTF?!

- You can test it on detected devices \rightarrow it will reply with a confirmation message
- Implemented in HomePlugPWN⁷

⁷urlhttps://github.com/FIUxIuS/HomePlugPWN/blob/master/layerscapy/HomePlugSG.py

44

Smart cities = UART cmds everywhere?!

But you know ...

- 2 State of the art
- 3 Current attacks
- 4 Attacking HomePlug GP
- 5 Smart Grids
- 6 Non documented things
- 7 Work in progress

Remember?

Other examples

Program Information Blocks (PIB)

- Used to store PLC's configuration
- Enables/Disables certains modes (WireTap, Sniffing, SLAC, etc.)
- A lot of non-documented blocks
- Many features could be discovered by digging this way

A lot of blocks have been retrieved and implemented in $ModulePIB^8$ of the HomePlugAV.py Scapy layer \rightarrow still needs more work to decode all of them

Dump PIB

2 tools:

PIBdump.py of HomePlugPWN

■ *plctool* of *open-plc-utils* → support more PLC chipsets

./plctool -f -i enp0s31f6 -p /tmp/plc.pib local enp0s31f6 00:B0:52:00:00:01 Fetch NNRAM Configuration enp0s31f6 F4:06:8D:CE:00:7D TYPE=0x15 (M25P32_ES) PAGE=0x0100 (256) BLOCK=0x10000 (65536) SIZE=0x400000 (4194304) enp0s31f6 00:B0:52:00:00:10 Read Module from Memory

Analyse PIB

The tool chkpib of open-plc-utils allows to extract informations:

PIBdump.py of HomePlugPWN

■ *plctool* of *open-plc-utils* → support more PLC chipsets

- A lot of undocumented blocks → implemented in ModulePIB⁹
- Still needs more work to decode all of them

Hidden commands

- Our tools (FAIFA¹⁰ and HomePlugPWN) implent usefull commands to test and intrude network
- A lot of commands are to be discovered + probably more logical vulnerabilities
- A lot to be documented and implemented \rightarrow as shown in "Homeplug AV and IEEE 1901"
- Call for contributors!

- 2 State of the art
- 3 Current attacks
- 4 Attacking HomePlug GP
- 5 Smart Grids
- 6 Non documented things
- 7 Work in progress

Mysteries

Some assumptions:

- Under MAC Layer 2 messages, interesting exchanged could also be observed
- But there is no tool to observe that
- Hard to implement in Software-Defined Radio + need an hardware managing the bandwidth
- Better chances looking at closed firmwares and hardware

Dump memory

2 methods:

From the exposed flash memory

■ For some vendors → with HomePlug AV specific commands (supported in *HomePlugPWN* (QCA < 7k for the moment) and *open-plc-utils*)

\$./plctool -i enp0s31f6 -n image.nvm local enp0s31f6 00:B0:52:00:00:01 Read Module from Memory [...]

If the device denies the command, some vendors release complet firmware.

[...]

\$./plctool -i enp0s31f6 -n image.nvm local enp0s31f6 00:B0:52:00:00:01 Read Module from Memory

Getting the NVM from SDRAM:

Non-Volatile Memory

NVM structure

Could be obtained with open-plc-utils-master/nvm:

typedef struct __packed nvm header2 uint16 t MajorVersion; uint16 t MinorVersion; uint32 t ExecuteMask: uint32 t ImageNymAddress: uint32_t ImageAddress; uint32 t ImageLength: uint32 t ImageChecksum; uint32 t EntryPoint; uint32 t NextHeader; uint32 t PrevHeader: uint32 t ImageType; uint16 t ModuleID; uint16 t ModuleSubID; uint16 t AppletEntryVersion; uint16 t Reserved0; [...] uint32 t Reserved11: uint32 t HeaderChecksum;

NVM structure (2)

```
$ ./chknvm -s -v plc.nvm
        plc.nvm (0) ------
        Header Version = 0x0001-0x0001
        Header Checksum = 0xA7A78802
        Header Next = 0x00000360
        Flash Address = 0x00000060
        Image Address = 0x00000000
        Entry Address = 0xFFFFFFFF
        Entry Version = 0x0000
    [...]
       plc.nvm (1) -
    [...]
      — plc.nvm (2) ——
    [...]
        Image Type = Custom Module Update Applet
        Image Exec = INT6000 | INT6300
        plc.nvm (3) -----
    [...]
        Image Type = Power Management Applet
       Image Exec = INT6000 | INT6300
  _____ plc.nvm (4) _____
    [...]
        Image Type = Generic Image
        Image Exec = INT6000 | INT6300
  _____ plc.nvm (5) _____
    [...]
        Image Type = Runtime Firmware
        Image Exec = INT6000 | INT6300
```


NVM Could be split by type of block easily with qca utilities:

\$./nvmsplit plc.nvm
\$ ls plc-*
plc-01.nvm
[...]
plc-05.nvm # <--- let's look at each image</pre>

Let's now look each block

Disassembling the firmware

From specs the QCA7420 \rightarrow AR7420 \rightarrow ARM processor.

Disassembling the firmware (2)

- \blacksquare the code is minimal \rightarrow not many strings but still helpful
- written in C++
- some time and coffee are needed
- fuzzy patching Applets takes time:
 - 1 patch
 - 2 merge blocks
 - 3 flash and see what happens...

Disassembling the firmware (2)

If the code is minimal \rightarrow not many strings but still helpful

written in C++

- some time and coffee are needed
- fuzzy patching Applets takes time:
 - 1 patch
 - 2 merge blocks
 - 3 flash and see what happens...

Warning

May brick your device :S \rightarrow need something safer

SPI accesses

Devkit exposes explicit SPI access to interface with the PLC modem:

2 parts: host/app CPU and a PLC modem/baseband

Possible to get Direct Memory Access + accesses to registers

source: Michael Epping. Vehicle Charging Control Unit. EMOB, 2017

More on that a bit later...

- 2 State of the art
- 3 Current attacks
- 4 Attacking HomePlug GP
- 5 Smart Grids
- 6 Non documented things
- 7 Work in progress

Conclusion

- FAIFA and HomePlugPWN are back in the game
- Power-Line Communication is almost everywhere
- Logical vulnerability exist in specs and vendors configurations
- A lot of bugs under the Layer 2 MAC could be found \rightarrow but PLC is not open enough (we're working on it)
- Finding bugs in the PLC baseband → difficult to debug for the moment, even with a devkit
- The work is not finished → interested people can contact us to advance these researches (we've been doing @home)

