
SF30th Hacking Edition : A journey into
Moo

Table of Contents

1 Introduction

2 From Moo to Arcade

3 Play additional games

4 Netcode

4

5

SF30th Anniversary Collection

released in may 2018 on every modern platforms
developed by Digital Eclipse and edited by Capcom

6

12 Street Fighter games playable offline

7

4 Street Fighter games playable online

8

Content

Training mode
Museum
everything great but. . . only 12 games to play offline and fewer
games with online mode :’(

9

Moo Emulator

Digital Eclipse uses a custom emulator called “Moo” in some
of their games :

SF30th Anniversary Collection
SNK 40th Anniversary Collection
Samurai Shodown Collection (not released yet)

Arcade emulator written from scratch, proprietary

10

Goal

MOAR Games
Instrumentalize the emulator in order to load additional games

Netcode
Fix SSF2X turbo speed
Play different games and enjoy Capcom netcode (:

11

Why ?

Because “Moo” is really a great emulator and some games run
better than in any other emulators (2x, 3.3, etc.)
An online mode is provided natively and works smoothly.

12

Moo ??

By looking at the classes names extracted from the RTTI
information, the symbol “Moo” appears.

13

Let’s google it

If we google it, there is only one accurate occurence, a guy
that talk about Moo in Arcade1up reddit

14

Arcade1Up : Cheap Arcade Cabinet ($250)

15

Arcade1up PCB

16

SF PCB

nico@debian ~/WIP/r2con % file MOO-Capcom-ShipMusl-SF
MOO-Capcom-ShipMusl-SF: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-musl-armhf.so.1, stripped

ROM strings
The Arcade1up cabinets use the “Moo” emulator

17

Moo author

Experimented developper (+30 years of experience)

Table of Contents

1 Introduction

2 From Moo to Arcade

3 Play additional games

4 Netcode

19

20

21

22

https://www.youtube.com/watch?v=06xuJSVJXeE

https://www.youtube.com/watch?v=06xuJSVJXeE

23

https://www.youtube.com/watch?v=_vPj8fwCLb4

https://www.youtube.com/watch?v=_vPj8fwCLb4

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Table of Contents

1 Introduction

2 From Moo to Arcade

3 Play additional games

4 Netcode

43

Workflow

Workflow when loading a game
Init the Game object according to the chosen game. For S2HF,
the following object is initialized :

Game_StreetFighterII_HF : Moo_Sys_CPS1 : MooBase
Parse and retrieve game assets from the filesystem
Map the GFXs using bank mappers
Render graphics, run the 68k emulator with the maincpu rom

44

Game assets

Mbundle
The game assets are located into a kind of ordered dictionnary
files
These ressources are neither compressed nor encrypted
Loïc WydD Petit wrote a script to extract these assets a

a. https://github.com/WydD/sf30ac-extractor

45

Game assets

Roms
By extracting the game assets, we can get the roms data.
SF30th emulator do not support Mame roms, it works only
with plain rom.

46

Street Fighter II Hyper Fighting roms

47

Main CPU

the differences are easily visible : swap each word (2 bytes)

47

Main CPU

the differences are easily visible : swap each word (2 bytes)

48

Mame CPS1 driver source code

Figure 1 – https://github.com/fesh0r/old-
mame/blob/master/src/mame/drivers/cps1.c#L9618

49

Audio samples (oki files)

Just a concatenation of the oki files (for the order : check
mame CPS1 driver source code)

50

Audio CPU (z80 file)

Identical

51

GFX files

VROM ?
The VROM is a ROM chip inside the game board, it contains :

pixel patterns, the colors and the metadata for assembling the
tiles into the background and sprites

Conversion
Convert gfx from Mame to Moo :

merge each files into one and reorder bytes
decode gfx data

52

GFX files [1/2]

53

GFX files [2/2]

Figure 2 – https://github.com/fesh0r/old-
mame/blob/master/src/mame/video/cps1.c#L1720

54

Mame to Moo conversion

The Mame driver source code must be parsed
to know what are the audio / gfx / 68k files
to get the correct order when concatenating the oki files
to know how to reorder the 68k files

55

Mame to Moo conversion

Figure 3 –
https://github.com/angelkillah/MooHijack/blob/master/script/mame2moo.py

56

original GFX patched in sf30th

57

Hijack Moo roms loading

Now that we can convert any CPS1 roms from Mame to Moo, we
need to force the game to load our freshly converted roms.

Steps
Locate the assets loading function
Hijack the execution flow

58

Moo assets loading

59

Moo assets loading

60

Hooking

To replace the loading of whatever resource, we hijack the
execution flow at two different locations :

the result of the first call to GetField() : to replace the original
resource size
the buffer filled by GetData() : to replace the resource data

61

Hooking

VEH Hooking
We modify the first byte of the instruction to hijack by an
opcode that will cause an exception
We install a vectored exception handler to catch it
cons : no need to calculate the instructions size

62

Hijack assets loading

63

Results. . .

63

Results. . .

64

Game over ?

65

Load Rom function

Almost no differences between both functions
Setup_CPS1_With_ROM_info() takes two arguments :

the object of the chosen game (this)
an address to a structure. . .

66

SF2CE_Config

67

1402bc3e8 => Dipswitches

68

Test Mode

69

1402bd090 => ??

70

CPS Board

A set of these data are copied to the “StreetFighterII_CE”
object attributes
The first 4-bytes data value (0xb71b00) is used in a method of
the class “Moo_Sys_CPS1”.
This method is used to execute the 68000 code ROM through
an emulator.

Clock frequency
0xb71b00 == 12000000 = 12Mhz
The processor Motorola 68000 used for SF2CE runs at 12Mhz

70

CPS Board

A set of these data are copied to the “StreetFighterII_CE”
object attributes
The first 4-bytes data value (0xb71b00) is used in a method of
the class “Moo_Sys_CPS1”.
This method is used to execute the 68000 code ROM through
an emulator.

Clock frequency
0xb71b00 == 12000000 = 12Mhz
The processor Motorola 68000 used for SF2CE runs at 12Mhz

71

CPS-B Registers

The original arcade board of CPS1 games contains several
registers :

priority mask : used to set the tiles priority levels
palette control register : indicates which palette pages to copy
from gfxram to dedicated ram
test register : used for self test checks
etc.

72

CPS-B Registers

Figure 4 –
https://github.com/mamedev/mame/blob/master/src/mame/video/cps1.cpp

Luckily, the values to set in CPS-B registers for each game are
listed in mame cps1 video source code

73

CPS-B Registers for SF2CE

Figure 5 – name, CPSB, gfx mapper, in2

74

CPSB-21-DEF

75

Makes more sense !

76

GFX Mapper

77

GFX Mapper

Figure 6 –
https://github.com/mamedev/mame/blob/master/src/mame/video/cps1.cpp

78

GFX Mapper

79

GFX Mapper

80

Summarize

How to load an additional game ?
Convert the rom to Moo compatible one
Hijack the roms loading with the converted ones
Patch the CPSB data with the ones from the new game
Patch the GFX mapper

81

Demo

82

Specific roms cases

I wish I could play Ghouls’n’Ghost :(
Some games can be set to freeplay through their dipswitches
(no coins needed)
What about the games that do not have freeplay available ?

83

How to fix in a “generic” way

Patch emulator game memory
Get the address of the coins through the cheat engine included
in Mame debugger
Hijack the handler of an opcode that is used to read a word
value from the game VRAM to set some coins
Enjoy moar games (:

84

Enjoy moar games

Figure 7 – before VRAM patching

85

Enjoy moar games

Figure 8 – after VRAM patching

86

Summarize [updated]

How to load an additional game ?
Convert the rom to Moo compatible one
Hijack the roms loading with the converted ones
Patch the CPSB data with the ones from the new game
Patch the GFX mapper
Either patch dipswitches to set freeplay game mode or
patch game VRAM if freeplay not available

87

Table of Contents

1 Introduction

2 From Moo to Arcade

3 Play additional games

4 Netcode

88

SSF2X speed problem

What’s the problem ?
The online version of ssf2x is not running at the correct speed
The problem exists since launch day and hasn’t been fixed until
now

89

Workflow when running ssf2x online

Init the following object :
Game_SuperStreetFighterII_Turbo : Moo_Sys_CPS2 :
MooBase

Parse and retrieve game assets from the filesystem
Load save state from assets to avoid desynch
Map the GFXs using bank mappers
Render graphics, run the 68k emulator with the maincpu rom

90

Save state

Save state ?
Moo supports memory save state (emulator snapshot memory)
When playing offline mode, it is used to save game progress
For online mode, it is used for both players to start the game
at the same state
For the four games available to play online, there are four
saved state files embedded in the mbundle files

91

Solution : patch and hijack save state

Steps
RE the save state format and patch the turbo value with the
correct one
Hijack the save state loading with the patched one
Enjoy

92

SSF2X online speed FIX

93

Play a different game online

Netplay
When reversing the netplay code to fix the ssf2x speed problem,
we noticed something interesting . . .

the roms are loaded LOCALLY for both players !!!!

94

Enable netplay for MOAR games

How to play additional games online
Convert the rom to Moo compatible one
Hijack the roms loading with the converted ones
Patch the CPSB data with the ones from the new game
Patch the GFX mapper
Play the additional game offline, at the menu, select two
players and save a memory snapshot
Take out the new save state from the memory and write
it to a file
Hijack the save state loading with the new one
Either patch dipswitches to set freeplay game mode or patch
game VRAM if freeplay not available

95

Demo

96

Source code

https://github.com/angelkillah/MooHijack

Thank you for your attention

QUESTIONS?

	Introduction
	From Moo to Arcade
	Play additional games
	Netcode

