

Practical attacks using cheap equipment

Presented the 07/06/2016 For Business France By Sébastien Dudek

Content

- Security measures
- Recent publications in the hacking community
- Practical attacks
- Results of our short researches

GSM and GPRS: confidentiality

- GPRS → authentication algorithm A3/A8
- Communication ciphered with A5/1 algorithm with a K_c key (derived from K_i)
- K_c is generated with the A8 Algorithm
- The K_i key is stored in the AuC (Authentication Center) and SIM (Subscriber Identity Module)

GSM and GPRS: architecture

GSM and GPRS: Handover

A stronger signal will likely attract User Equipments \rightarrow Useful for attackers

GSM and GPRS: few differences

- GPRS authentication \rightarrow SGSN
- Ciphering in GSM is done at Layer 1 on the TCH (Traffic Channel) and DCCH (Dedicated Control CHannel)
- Ciphering in GPRS is done at Layer 2 LLC (Logical Link Control) with GEA1 algorithm

GSM and GPRS: possible attacks

- No mutual authentication → Fake rogue BTS
- Reuse of Authentication triplet RAND, RES, K_c many times
- Signaling channel not encrypted → open for attacks
- Attacks on the A5/1 algorithm

⇒ Interception is possible on GSM and GPRS

3G/4G: advantages

- 3G came with the KASUMI encryption algorithm
- Then SNOW-3G → second encryption algorithm for 3G, also used for 4G (in case KASUMI is broken)
- Additionally to SNOW-3G, 4G uses AES CBC 128 bits to cipher communications
- Thank to USIM \rightarrow 3G and 4G network use mutual authentication
- But accesses to 3G networks are possible with previous SIM card \rightarrow possible bypass of mutual authentication
- In 2011, ZUC algorithm has been introduced with 128 bits key

⇒ Encryption algorithm is strong and mutual authentication make it difficult to intercept communications

Mobile interception: signal attraction

A User Equipment connects to the closer Base Station

3G/4G downgrades to 2G via

- jamming attacks → a simple Gaussian noise in targeted channels
- protocol attacks \rightarrow difficult
- baseband strange behaviors

State Of the Art: publications

Many publications exist:

- Attacks on GSM A5/1 algorithm with rainbow tables
 - (at 26c3, Chris Paget and Karsten Nohl)
- OsmocomBB
 - (at 2010 at 27c3, Harald Welte and Steve Markgraf)

Hacking the Vodaphone femtocell

(at BlackHat 2011, Ravishankar Borgaonkar, Nico Golde, and Kevin Redon)

An analysis of basebands security

(at SSTIC 2014, Benoit Michau)

Attacks on privacy and availability of 4G

(In October 2015, Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valtteri Niemi and Jean-Pierre Seifert)

How to not break LTE crypto

(at SSTIC 2016, Christophe Devine and Benoit Michaud)

State Of the Art: tools

Hardware

- USRP from 700 € (without daughter-boards and antennas)
- SysmoBTS from 2,000 €
- BladeRF from 370 € (without antennas)

Software

- Setup a mobile network
 - OpenBTS: GSM and GPRS network compatible with USRP and BladeRF
 - OpenUMTS: UMTS network compatible with some USRP
 - OpenLTE: LTE network compatible with BladeRF and USRP
 - OpenAir: LTE network compatible with some USRP
 - YateBTS: GSM and GPRS network compatible with USRP and BladeRF
- Analyze traffic
 - libmich: Analyze and craft mobile packets captured with GSMTAP
 - Wireshark: Analyze GSMTAP captured packets
 - OsmocomBB: sniff and capture GSM packets

Passive attacks in GSM

CCCH (Common Control Channels) give a lot of information

- Management messages, sometimes SMS in clear, TMSIs,...
- CCCH → paging request → can be exploited to locate someone

Tools

OsmocomBB, Airprobe,...

Capture a specific channel (1)

List of ARFCN

OsmocomBB# show cell 1									
ARFCN	MCC	MNC	LAC	cell ID	forb.LA	prio	min-db	max-pwr	rx-lev
	+	+	+	+	+	+	+	++	
1	208	01	0x	0xe	n/a	n/a	-110	5	-71
3	208	01	0x	0xb	n/a	n/a	-110	5	-76
7	208	01	Θx	0xa	n/a	n/a	-110	5	-74
11	208	01	Θx	0xe	n/a	n/a	-110	5	-75
77	208	10	0x	0x9	no	normal	-105	5	-84
513DCS	208	01	Θx	0xd	n/a	n/a	-95	0	-82
518DCS	208	01	Θx	0x5	n/a	n/a	-95	0	-79
609DCS	208	01	0x	0xf	n/a	n/a	-95	0	-70
744DCS	208	10	Θx	0xe	n/a	n/a	-95	Θ	-91
976	208	20	Θx	0xc	n/a	n/a	-104	5	-81
978	208	20	Θx	0xc	n/a	n/a	-104	5	-79
979	208	20	Θx	0x0	n/a	n/a	-104	5	-84
982	208	20	Θx	0xc	n/a	n/a	-104	5	-74
984	208	20	Θx	0xc	n/a	n/a	-104	5	- 57
986	n/a	n/a	n/	n/a	n/a	n/a	n/a	n/a	n/a
1011	208	20	0x	0x9	n/a	n/a	-104	5	-87
1012	208	20	θx	0xb	n/a	n/a	-104	5	-84

Capture a specific channel (2)

Leaked TMSI

<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(353	1)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(116	O)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(324	5)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(331	4)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(138	6)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(893)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(131)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(596)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(324	5)
<0001>	app_ccch_scan.c:312	Paging1:	Normal	paging	chan	tch/f	to	tmsi	M(287)

⇒ Use SMS Class-0 messages to track a user

GSM Lab setup: for interception

- YateBTS software = FREE
- Total cost = 400 €

GSM interception: User Equipment behaviors

- A User Equipment decide to register to another base station if
 - it can register to any MCC/MNC BTS close to it
 - it can register to a test network close to it
 - only the current used network isn't reachable anymore, even if a rogue base station is closer
 - the signal is strong and the mutual authentication succeeded (not the case in GSM/GPRS)
- Everything depends on the mobile stack implementations...

Demo...

Fake Base Station

Other vulnerable devices

Interception of Intercoms

Results on intercoms

On a Link iDP GSM intercom

- leak of user phone numbers
- send Intercom specific commands
- send AT commands to interact with the targeted baseband
- update users with premium rated numbers (e.g: Allopass)

Further work

- Reduce the model replacing the computed with a Raspberry Pi
 3, or an ODROID device from about 50 €
- Semi-automatic channel jamming on 3G
- Study of protocol attacks on 3G and 4G

3G → 2G downgrade: hardware

- Downgrade is difficult with traditional jammers
- an attacker needs to focus to few specific bands → bands of the targeted operators
- A simple HackRF can be used (340 €)

Jamming video demo...

IF gain: 60								
BB gain: 60								
PE anini 60				1				
Freq: 1.8742G								
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>R</u> un <u>T</u> ools <u>H</u> elp								
Options	WX GUI Slider	WX GUI Slider	WX GUI Slider	▶ [Audio]				
ID: top_block	ID: variable_slider_0_1_0_0	ID: variable_slider_0	ID: variable_slider_0_1	▶ [Boolean Operators]				
	Default Value: 10	Default Value: 1.8742G	Default Value: 10	▶ [Byte Operators]				
Variable	Minimum: 10 Maximum: 60	Minimum: 900M Maximum: 2.2G	Minimum: 10 Maximum: 60	Channelizers]				
Value: 5M	Converter: Float	Converter: Float	Converter: Float	P [Channel Models]				
				[Coding]				
	Control Port]							
	▶ [Debug Tools]							
Noise Source	▶ [Deprecated]							
Amplitude: 50	▶ [Digital Television]							
Ch0: BB Gain (dB): 10				P [Equalizers]				
	Ch0: Bandwidth (Hz)	: 20M		P [Error Coding]				
				1 [FCD]				

Alternatives to Jamming attacks

Protocol attacks on 4G and 3G

- using OpenLTE for 4G, or Open-UMTS for 3G
- a compromized femtocell for 3G, and 4G femtocell
 → thanks to serial port, or unsecure update

Lab setup: to find bugs

- 1 USRP: 700€
- 2 daughter boards: about 120 € each
- 2 TX and RX antennas: about 30€ each
- OpenBTS Software: Free

Fuzzing lab in real

Fuzzing: our results

Made a fuzzing test framework MobiDeke (not released publicly)

- Results found on a HTC Desire Z
- Found multiple application crashes
 Mostly Java exception → not exploitable
- 1 exploitable vulnerability on SETUP CALLS handling
 → used to compromize the baseband
- Presented at hack.lu conference in 2012 with Guillaume Delugré

Conclusion

Attacks on GSM and GPRS are affordable: less than 1,000 €

Attacks 3G and 4G are difficult, but

- mutual authentication could be bypassed depending on the baseband implementation
- Publicly vulnerable femtocell can be found through Ebay (with serial ports, or unsecure download processes)
- The IoT ecosystem uses a lot GSM and 3G stacks (for example digital intercoms) → vulnerable to the same attacks as traditional mobile devices

