
Date 07/04/2017

At Sthack security conference in Bordeaux

By Eloi Vanderbeken

How to develop an unpacker

The StarForce case

2 / 25

Whoami

 Eloi Vanderbeken IRL

 @elvanderb on twitter

 Working for Synacktiv:
 Offensive security company (pentest, red team,

vuln hunting, exploitation etc.)
 If there is software in it, we can own it :)
 We are recruiting!

3 / 25

Packers

 Several types of packers
 Malware packers: often very simple, just used to bypass AV
 Compressor: also very simple, just used to reduce binaries size

(UPX)
 Protectors: need to resist to skilled reversers / crackers

 Protectors
 Wrap an existing program into another one
 Offer APIs to interact with the packer (licensing, protected

variables etc.)
 New program is harder to study (Anti-X, virtualization, etc.)
 The protection should not be easy to remove → protection and

original program must be entangled

4 / 25

Offensive information security?

5 / 25

Yes!

 Some vuln^winteresting programs are
protected by protectors

 You won’t be able to reverse or fuzz them
without unpacking them

 Unpacking is the sum of numerous useful
skills for a vuln hunter
 reversing, automation, Windows internals, PE format,

etc.

 It’s fun, you fight against someone trying to
block you

6 / 25

Our target: StarForce

 What we won’t cover: StarForce Disc
 Infamous protection used in 2000-2007
 Used a ring0 driver and virtualization
 Resisted to crackers for 420 days (!!!)

 What we’ll see: StarForce ProActive
 Lighter protection (no r0, no VM)
 Includes licensing tools
 Used to protect a lot of Shareware
 A lot simpler than the older one but still interesting :)

7 / 25

Our unpacker: Astroboon

8 / 25

Architecture of our unpacker

 DLL injected in the targeted process
 No debug API
 No memory translation needed
 Direct access to several information (PEB, registers)

 Coded in C
 And some inlined ASM
 1200 lines of StarForce specific code

 (Almost) no external dependencies
 It uses BeatriX LDE but it also includes my own disassembler so I

could drop the LDE
 Includes a PE parser, a PE dumper, an import fixer, a code hooker,

a disassembler, etc

9 / 25

Organisation of the slides

 For each protection
 Description of the protection
 Description on how it’s implemented by various

protectors
 How to bypass it in the StarForce case
 How to implement the automatic bypass in our

unpacker

 At each step, if you have any question,
please ask :)

10 / 25

Part 1: layers

PE Before

PE After

Packer’s code

Time line

Original Entry Point
(OEP)

11 / 25

Layers: what we need to do

 Find the OEP
 Signatures of common RT entry points
 Hooks on APIs commonly used at the entry point

(GetCommandLine)
 Examination of the call stack and code xrefs
 etc.

 Dump the process
 LordPE / ImpRec (a little bit outdated now ☺)
 Scylla (open source !)
 BaDu (Baboon’s Dumper (yes, I know))

12 / 25

Layers: How to automatically find
the OEP
 Change pages rights

 Remove the eXecution right

 Make sure they are not restored
 Hook VirtualProtect

 Catch the exceptions
 We use Vectored Exception Handlers
 We could put a hook on KiUserExceptionDispatcher…
 … but some packers will detect this

 When the process tries to execute one of the first
sections: we are at the OEP

13 / 25

Layers: How to automatically find
the OEP

14 / 25

Part 2: API redirection

 Kernel32.dll

GetCurrentProcessId

 Kernel32.dll

 Allocated Memory

Obfuscated API code

15 / 25

API Redir: what we need to do

 Find the IAT
 Find all the call [XXX] / jmp [XXX]
 Search for API addresses above and between the min and max addresses

 Fix redirections
 Very protector specific, different kind of redirections
 Some of them includes special protections in them (SecuROM triggers)

 Two main approaches:
 Hook the redirection mechanism

We will have the real API addresses...

But need to find the redirection mechanism (signatures, heuristics etc.)

 Try to recover the original API address from the redirection

 Once the original addresses are recovered, rebuild the IAT
 ImpRec / ChimpREC (a little bit outdated)
 Scylla
 BINI: BINI Is Not ImpRec (No Baboon in this name!)

16 / 25

API Redir: StarForce case

 Addresses in the IAT point to obfuscated version of the original API
 No direct redirection in the code (call [API addr] replaced by call REDIRECTION

for example)
 No destruction of the IAT (all the addresses are at their original place)

 Obfuscated version is created on the fly
 Even the API with known behavior (GetCurrentProcessId, GetCurrentProcess,

GetProcessHeap, etc.)

 Sometimes the entire API is rewritten
 no final jump to the original code to help us

 ~ 20 obfuscation rules
 cmc / cmc = nop
 push X / xchg [esp], Y = push Y
 etc.

17 / 25

Astroboon approach

 Construct a canonical representation
 Disassemble the code
 Stop when we encounter a RET
 Follow the unconditional JMPs, not the JCC
 Don’t enter the calls
 Deobfuscate the produced trace

 If the canonical representation of an obfuscated code
matches the one of an API → WIN

 But we can have multiple matches in multiple DLLs
 We can use adjacent addresses to solve this problem
 Adjacent addresses → same DLL

18 / 25

Astroboon approach - cont’d

19 / 25

Part 3: Code redirection

Anti-dump + obfuscation

20 / 25

Code redirections: how to fix this

 Find all the redirections
 Find all the call / jmp / jcc instructions which point

to the StarForce section

 Fix the redirections
 Depends on the protector
 Often based on tracing methods

21 / 25

Astroboon approach

 A code is always used a little bit before jumping to the original code

 It doesn’t change between versions
 Easy to put a sig on it
 pop eax / popfd / pop ebp / lea esp,[esp+4] / pop edi / pop esi / pop edx / pop ecx /

pop ebx / xchg [esp],eax / retn

 All we have to do is set a HBP on it, jump on the redirection and let
StarForce do the redirection for us.
 Modify debug registers with SetThreadContext
 Make sure our HBP cannot be detected with a SEH by clearing the DRs in our VEH

and restoring them via a hook on ZwContinue

 To find the final jump we trace the code step by step by setting the
Trap Flag
 To make sure it’s not detected/cleared with a PUSHFD/POPFD, we clear/set the

Trap Flag in the stack when we detect those instructions after/before their
execution.

22 / 25

Part 4: StarForce MISC

 StarForce tries to detect VMs
 Under VirtualBox, just clear the registry key

HKLM\HARDWARE\DESCRIPTION\System\VideoBiosVersion

 StarForce has a watchdog thread that detects
debuggers and patches
 Just kill it before starting to reconstruct the executable

 StarForce uses the (non-reversible)
ThreadHideFromDebugger thread information
class to… hide threads from the debugger
 Hook NtSetInformationThread and block the calls

23 / 25

Part 5: MISC MISC

 When your reconstruction code fails for unknown reason, try to
add delays or random
 Some protectors detect when you call all the redirected function one after the

other

 Always prefer HBP over BP

 Prefer generic methods over signatures
 But use signatures when it’s handy :D

 To attach your debugger to a protected process
 Patch NtSetInformationThread before running it → bypass

ThreadHideFromDebugger
 Suspend the process → watchdog threads will be neutralized
 In your debugger, patch DebugActiveProcess to make sure that

DbgUiIssueRemoteBreakin is not called → no thread will be created in the
debugged process

24 / 25

Part 6: to go further...

 Armadillo
 API redirection / IAT destruction
 Nanomite
 CopyMEM2

 SecuROM
 Triggers

 ASProtect
 Now owned by StarForce :D
 IAT destruction, custom VM, custom anti dumps

 Themida
 VM, anti X

 VMProtect
 VM...

THANK YOU FOR YOUR ATTENTION

Do you have any
questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

