
Date 07/04/2017

At Sthack security conference in Bordeaux

By Eloi Vanderbeken

How to develop an unpacker

The StarForce case

2 / 25

Whoami

 Eloi Vanderbeken IRL

 @elvanderb on twitter

 Working for Synacktiv:
 Offensive security company (pentest, red team,

vuln hunting, exploitation etc.)
 If there is software in it, we can own it :)
 We are recruiting!

3 / 25

Packers

 Several types of packers
 Malware packers: often very simple, just used to bypass AV
 Compressor: also very simple, just used to reduce binaries size

(UPX)
 Protectors: need to resist to skilled reversers / crackers

 Protectors
 Wrap an existing program into another one
 Offer APIs to interact with the packer (licensing, protected

variables etc.)
 New program is harder to study (Anti-X, virtualization, etc.)
 The protection should not be easy to remove → protection and

original program must be entangled

4 / 25

Offensive information security?

5 / 25

Yes!

 Some vuln^winteresting programs are
protected by protectors

 You won’t be able to reverse or fuzz them
without unpacking them

 Unpacking is the sum of numerous useful
skills for a vuln hunter
 reversing, automation, Windows internals, PE format,

etc.

 It’s fun, you fight against someone trying to
block you

6 / 25

Our target: StarForce

 What we won’t cover: StarForce Disc
 Infamous protection used in 2000-2007
 Used a ring0 driver and virtualization
 Resisted to crackers for 420 days (!!!)

 What we’ll see: StarForce ProActive
 Lighter protection (no r0, no VM)
 Includes licensing tools
 Used to protect a lot of Shareware
 A lot simpler than the older one but still interesting :)

7 / 25

Our unpacker: Astroboon

8 / 25

Architecture of our unpacker

 DLL injected in the targeted process
 No debug API
 No memory translation needed
 Direct access to several information (PEB, registers)

 Coded in C
 And some inlined ASM
 1200 lines of StarForce specific code

 (Almost) no external dependencies
 It uses BeatriX LDE but it also includes my own disassembler so I

could drop the LDE
 Includes a PE parser, a PE dumper, an import fixer, a code hooker,

a disassembler, etc

9 / 25

Organisation of the slides

 For each protection
 Description of the protection
 Description on how it’s implemented by various

protectors
 How to bypass it in the StarForce case
 How to implement the automatic bypass in our

unpacker

 At each step, if you have any question,
please ask :)

10 / 25

Part 1: layers

PE Before

PE After

Packer’s code

Time line

Original Entry Point
(OEP)

11 / 25

Layers: what we need to do

 Find the OEP
 Signatures of common RT entry points
 Hooks on APIs commonly used at the entry point

(GetCommandLine)
 Examination of the call stack and code xrefs
 etc.

 Dump the process
 LordPE / ImpRec (a little bit outdated now ☺)
 Scylla (open source !)
 BaDu (Baboon’s Dumper (yes, I know))

12 / 25

Layers: How to automatically find
the OEP
 Change pages rights

 Remove the eXecution right

 Make sure they are not restored
 Hook VirtualProtect

 Catch the exceptions
 We use Vectored Exception Handlers
 We could put a hook on KiUserExceptionDispatcher…
 … but some packers will detect this

 When the process tries to execute one of the first
sections: we are at the OEP

13 / 25

Layers: How to automatically find
the OEP

14 / 25

Part 2: API redirection

 Kernel32.dll

GetCurrentProcessId

 Kernel32.dll

 Allocated Memory

Obfuscated API code

15 / 25

API Redir: what we need to do

 Find the IAT
 Find all the call [XXX] / jmp [XXX]
 Search for API addresses above and between the min and max addresses

 Fix redirections
 Very protector specific, different kind of redirections
 Some of them includes special protections in them (SecuROM triggers)

 Two main approaches:
 Hook the redirection mechanism

We will have the real API addresses...

But need to find the redirection mechanism (signatures, heuristics etc.)

 Try to recover the original API address from the redirection

 Once the original addresses are recovered, rebuild the IAT
 ImpRec / ChimpREC (a little bit outdated)
 Scylla
 BINI: BINI Is Not ImpRec (No Baboon in this name!)

16 / 25

API Redir: StarForce case

 Addresses in the IAT point to obfuscated version of the original API
 No direct redirection in the code (call [API addr] replaced by call REDIRECTION

for example)
 No destruction of the IAT (all the addresses are at their original place)

 Obfuscated version is created on the fly
 Even the API with known behavior (GetCurrentProcessId, GetCurrentProcess,

GetProcessHeap, etc.)

 Sometimes the entire API is rewritten
 no final jump to the original code to help us

 ~ 20 obfuscation rules
 cmc / cmc = nop
 push X / xchg [esp], Y = push Y
 etc.

17 / 25

Astroboon approach

 Construct a canonical representation
 Disassemble the code
 Stop when we encounter a RET
 Follow the unconditional JMPs, not the JCC
 Don’t enter the calls
 Deobfuscate the produced trace

 If the canonical representation of an obfuscated code
matches the one of an API → WIN

 But we can have multiple matches in multiple DLLs
 We can use adjacent addresses to solve this problem
 Adjacent addresses → same DLL

18 / 25

Astroboon approach - cont’d

19 / 25

Part 3: Code redirection

Anti-dump + obfuscation

20 / 25

Code redirections: how to fix this

 Find all the redirections
 Find all the call / jmp / jcc instructions which point

to the StarForce section

 Fix the redirections
 Depends on the protector
 Often based on tracing methods

21 / 25

Astroboon approach

 A code is always used a little bit before jumping to the original code

 It doesn’t change between versions
 Easy to put a sig on it
 pop eax / popfd / pop ebp / lea esp,[esp+4] / pop edi / pop esi / pop edx / pop ecx /

pop ebx / xchg [esp],eax / retn

 All we have to do is set a HBP on it, jump on the redirection and let
StarForce do the redirection for us.
 Modify debug registers with SetThreadContext
 Make sure our HBP cannot be detected with a SEH by clearing the DRs in our VEH

and restoring them via a hook on ZwContinue

 To find the final jump we trace the code step by step by setting the
Trap Flag
 To make sure it’s not detected/cleared with a PUSHFD/POPFD, we clear/set the

Trap Flag in the stack when we detect those instructions after/before their
execution.

22 / 25

Part 4: StarForce MISC

 StarForce tries to detect VMs
 Under VirtualBox, just clear the registry key

HKLM\HARDWARE\DESCRIPTION\System\VideoBiosVersion

 StarForce has a watchdog thread that detects
debuggers and patches
 Just kill it before starting to reconstruct the executable

 StarForce uses the (non-reversible)
ThreadHideFromDebugger thread information
class to… hide threads from the debugger
 Hook NtSetInformationThread and block the calls

23 / 25

Part 5: MISC MISC

 When your reconstruction code fails for unknown reason, try to
add delays or random
 Some protectors detect when you call all the redirected function one after the

other

 Always prefer HBP over BP

 Prefer generic methods over signatures
 But use signatures when it’s handy :D

 To attach your debugger to a protected process
 Patch NtSetInformationThread before running it → bypass

ThreadHideFromDebugger
 Suspend the process → watchdog threads will be neutralized
 In your debugger, patch DebugActiveProcess to make sure that

DbgUiIssueRemoteBreakin is not called → no thread will be created in the
debugged process

24 / 25

Part 6: to go further...

 Armadillo
 API redirection / IAT destruction
 Nanomite
 CopyMEM2

 SecuROM
 Triggers

 ASProtect
 Now owned by StarForce :D
 IAT destruction, custom VM, custom anti dumps

 Themida
 VM, anti X

 VMProtect
 VM...

THANK YOU FOR YOUR ATTENTION

Do you have any
questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

