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Whoami

 Eloi Vanderbeken IRL

 @elvanderb on twitter

 Working for Synacktiv:
 Offensive security company (pentest, red team, 

vuln hunting, exploitation etc.)
 If there is software in it, we can own it :)
 We are recruiting!
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Packers

 Several types of packers
 Malware packers: often very simple, just used to bypass AV
 Compressor: also very simple, just used to reduce binaries size 

(UPX)
 Protectors: need to resist to skilled reversers / crackers

 Protectors
 Wrap an existing program into another one
 Offer APIs to interact with the packer (licensing, protected 

variables etc.)
 New program is harder to study (Anti-X, virtualization, etc.)
 The protection should not be easy to remove → protection and 

original program must be entangled
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Offensive information security?
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Yes!

 Some vuln^winteresting programs are 
protected by protectors

 You won’t be able to reverse or fuzz them 
without unpacking them

 Unpacking is the sum of numerous useful 
skills for a vuln hunter
 reversing, automation, Windows internals, PE format, 

etc.

 It’s fun, you fight against someone trying to 
block you
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Our target: StarForce

 What we won’t cover: StarForce Disc 
 Infamous protection used in 2000-2007
 Used a ring0 driver and virtualization
 Resisted to crackers for 420 days (!!!)

 What we’ll see: StarForce ProActive
 Lighter protection (no r0, no VM)
 Includes licensing tools
 Used to protect a lot of Shareware
 A lot simpler than the older one but still interesting :)
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Our unpacker: Astroboon
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Architecture of our unpacker

 DLL injected in the targeted process
 No debug API
 No memory translation needed
 Direct access to several information (PEB, registers)

 Coded in C
 And some inlined ASM
 1200 lines of StarForce specific code

 (Almost) no external dependencies
 It uses BeatriX LDE but it also includes my own disassembler so I 

could drop the LDE
 Includes a PE parser, a PE dumper, an import fixer, a code hooker, 

a disassembler, etc
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Organisation of the slides

 For each protection
 Description of the protection
 Description on how it’s implemented by various 

protectors
 How to bypass it in the StarForce case
 How to implement the automatic bypass in our 

unpacker

 At each step, if you have any question, 
please ask :)
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Part 1: layers

PE Before

PE After

Packer’s code

 

 

Time line

Original Entry Point
(OEP)
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Layers: what we need to do

 Find the OEP
 Signatures of common RT entry points
 Hooks on APIs commonly used at the entry point 

(GetCommandLine)
 Examination of the call stack and code xrefs
 etc.

 Dump the process
 LordPE / ImpRec (a little bit outdated now ☺)
 Scylla (open source !)
 BaDu (Baboon’s Dumper (yes, I know))



  

12 / 25

Layers: How to automatically find 
the OEP
 Change pages rights 

 Remove the eXecution right

 Make sure they are not restored
 Hook VirtualProtect

 Catch the exceptions
 We use Vectored Exception Handlers
 We could put a hook on KiUserExceptionDispatcher…
 … but some packers will detect this

 When the process tries to execute one of the first 
sections: we are at the OEP
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Layers: How to automatically find 
the OEP
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Part 2: API redirection

 

 

 Kernel32.dll

GetCurrentProcessId

 Kernel32.dll

 Allocated Memory

Obfuscated API code
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API Redir: what we need to do

 Find the IAT
 Find all the call [XXX] / jmp [XXX]
 Search for API addresses above and between the min and max addresses

 Fix redirections
 Very protector specific, different kind of redirections
 Some of them includes special protections in them (SecuROM triggers)

 Two main approaches:
 Hook the redirection mechanism

We will have the real API addresses...

But need to find the redirection mechanism (signatures, heuristics etc.)

 Try to recover the original API address from the redirection

 Once the original addresses are recovered, rebuild the IAT
 ImpRec / ChimpREC (a little bit outdated)
 Scylla
 BINI: BINI Is Not ImpRec (No Baboon in this name!)
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API Redir: StarForce case

 Addresses in the IAT point to obfuscated version of the original API
 No direct redirection in the code (call [API addr] replaced by call REDIRECTION 

for example)
 No destruction of the IAT (all the addresses are at their original place)

 Obfuscated version is created on the fly
 Even the API with known behavior (GetCurrentProcessId, GetCurrentProcess, 

GetProcessHeap, etc.)

 Sometimes the entire API is rewritten
 no final jump to the original code to help us

 ~ 20 obfuscation rules
 cmc / cmc = nop
 push X / xchg [esp], Y = push Y
 etc.
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Astroboon approach

 Construct a canonical representation
 Disassemble the code
 Stop when we encounter a RET
 Follow the unconditional JMPs, not the JCC
 Don’t enter the calls
 Deobfuscate the produced trace

 If the canonical representation of an obfuscated code 
matches the one of an API → WIN

 But we can have multiple matches in multiple DLLs
 We can use adjacent addresses to solve this problem
 Adjacent addresses → same DLL
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Astroboon approach - cont’d
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Part 3: Code redirection

 

 

Anti-dump + obfuscation
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Code redirections: how to fix this

 Find all the redirections
 Find all the call / jmp / jcc instructions which point 

to the StarForce section

 Fix the redirections
 Depends on the protector
 Often based on tracing methods
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Astroboon approach

 A code is always used a little bit before jumping to the original code

 It doesn’t change between versions
 Easy to put a sig on it
 pop eax / popfd / pop ebp / lea esp,[esp+4] / pop edi / pop esi / pop edx / pop ecx / 

pop ebx / xchg [esp],eax / retn

 All we have to do is set a HBP on it, jump on the redirection and let 
StarForce do the redirection for us.
 Modify debug registers with SetThreadContext
 Make sure our HBP cannot be detected with a SEH by clearing the DRs in our VEH 

and restoring them via a hook on ZwContinue

 To find the final jump we trace the code step by step by setting the 
Trap Flag
 To make sure it’s not detected/cleared with a PUSHFD/POPFD, we clear/set the 

Trap Flag in the stack when we detect those instructions after/before their 
execution.
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Part 4: StarForce MISC

 StarForce tries to detect VMs
 Under VirtualBox, just clear the registry key  

HKLM\HARDWARE\DESCRIPTION\System\VideoBiosVersion

 StarForce has a watchdog thread that detects 
debuggers and patches
 Just kill it before starting to reconstruct the executable

 StarForce uses the (non-reversible) 
ThreadHideFromDebugger thread information 
class to… hide threads from the debugger
 Hook NtSetInformationThread and block the calls



  

23 / 25

Part 5: MISC MISC

 When your reconstruction code fails for unknown reason, try to 
add delays or random
 Some protectors detect when you call all the redirected function one after the 

other

 Always prefer HBP over BP

 Prefer generic methods over signatures
 But use signatures when it’s handy :D

 To attach your debugger to a protected process
 Patch NtSetInformationThread before running it → bypass 

ThreadHideFromDebugger
 Suspend the process → watchdog threads will be neutralized
 In your debugger, patch DebugActiveProcess to make sure that 

DbgUiIssueRemoteBreakin is not called → no thread will be created in the 
debugged process
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Part 6: to go further...

 Armadillo
 API redirection / IAT destruction
 Nanomite
 CopyMEM2

 SecuROM
 Triggers

 ASProtect
 Now owned by StarForce :D
 IAT destruction, custom VM, custom anti dumps

 Themida
 VM, anti X

 VMProtect
 VM...



  

THANK YOU FOR YOUR ATTENTION

Do you have any 
questions?
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