
Cross-Site Scripting vulnerabilities
in Zend Server < 9.1.3

Security advisory
2018-04-23

Thomas Chauchefoin
Julien Egloff

www.synacktiv.com 5 rue Sextius Michel 75015 Paris

Vulnerability description

Presentation of Zend Server / Zend Debugger
“With Zend Server, development and operation teams are equipped with the software infrastructure, tools, and best practices
for productive collaboration and continuous delivery of their mobile and web apps with exceptional performance, reliability,
and security.”1

“The Zend Debugger is the PHP extension which should be installed on your Web server in order to perform optimal remote

debugging and profiling using Zend Studio. […] The Zend Debugger comes bundled with both Zend Core and Zend Platform
and does not need to be installed separately.”2

The issue
Synacktiv discovered that Zend Debugger does not correctly encode user-controlled data before using it in error messages.
Thus, an attacker could abuse it to craft arbitrary HTML elements in server’s response, leading to a possibility of Cross-Site
Scripting (XSS) attacks. Technical details are documented in the Attack scenario part of this document.

The only requirement is that the Zend Debugger module has to be loaded and enabled. It does not require any prior
authentication and will work for any domain served by the web server where this module is present.

It should be noted that this vulnerability does not appear to be present in production mode and that development instances of
Zend Server are not supposed to be exposed to the Internet.

Affected versions
The following versions are known to be affected:

• Zend Debugger, bundled with Zend Server 9.0.1 up to 9.1.3 and up to 8.5.9.

Official mitigation
Zend Server 8.5.9 and 9.1.3 bundle a fixed version of Zend Debugger.

Timeline

Date Action

2018-02-02 Advisory sent to Zend.

2018-04-17 Zend publishes Zend Server 8.5.9 and 9.3.13.

2018-04-19 MITRE assigns CVE-2018-10230 to the vulnerability.

2018-04-23 Advisory published.

1 http://www.zend.com/en/products/zend_server

2 https://www.zend.com/topics/Zend-Debugger-Installation-Guide.pdf

3 http://forums.zend.com/viewtopic.php?f=8&t=134223

 2/3

http://www.zend.com/en/products/zend_server
http://forums.zend.com/viewtopic.php?f=8&t=134223
https://www.zend.com/topics/Zend-Debugger-Installation-Guide.pdf

Technical description and proof-of-concept

Initial vulnerability discovery
In ZendDebugger.so, the function at 0x00015D10 is responsible of handling user’s connection and retrieving the actual
configuration directives (from URL parameters or configuration file). When asking the debugger to connect back to a host,
Zend Debugger will try to resolve its hostname (if applicable) and then connect to it. If it fails to resolve the domain name or
connect to the host, the value extracted from the URL parameter debug_host will be inserted into server’s response without
a proper encoding:

 while (1)
 {
 [...]
 if (zend_debugger_lookup_hostname(host_2, &addr_1.sa_data[2]) == -1)
 {
 zend_realloc_printf(v41, "Failed to resolve host '%s'. ", host_2, v41);
 goto SKIP_CONNECT;
 }
 if (zend_debugger_check_ip_allowed(&addr_1, 16LL, host_2, v41))
 goto SKIP_CONNECT;
 if (!connect(v4, &addr_1, 0x10u))
 break;
 zend_realloc_printf(v41, "Failed to connect to host '%s'. ", host_2, v41);
At 0x0001E3E0, some code is responsible for matching denied / allowed hosts with the one provided in debug_host, as
well as returning an error message if it is not allowed:

 if (allowed_hosts)
 {
 if (*allowed_hosts)
 {
LABEL_24:
 if (zend_match_host_masks(host, allowed_hosts, ',') == -1)
 {
 zend_realloc_printf(
 out_buffer,
 "Host '%s' is not allowed to open debug sessions - please configure
zend_debugger.allow_hosts in the ini file.",
 host);
 return 0xFFFFFFFFLL;
 }
 }
 }
Once again, the user-controlled value is not properly encoded before being inserted into the response. All the other error
messages formatted using debug_host are affected and must be fixed.

Proof of concept
On any host where the module is installed and enabled, an attacker can trigger this vulnerability by adding his payload in the
parameter debug_host, like in the following example:

index.php?debug_host=synacktiv.ninja<script>alert(document.domain)</script>&start_debug=1

Impact
A successful exploitation allows an unauthenticated attacker to craft hyperlinks that, once accessed by a victim, would
execute arbitrary JavaScript code in his browser in the context of the website. Thus, if this victim is currently authenticated to
this website (for instance via session cookies), the attacker would be able to perform actions on this website on victim’s
behalf. If the victim is not authenticated, this could still allow performing phishing attacks to steal credentials.

 3/3

	Vulnerability description
	Presentation of Zend Server / Zend Debugger
	The issue
	Affected versions
	Official mitigation
	Timeline

	Technical description and proof-of-concept
	Initial vulnerability discovery
	Proof of concept
	Impact

