

Outline

1 Introduction & Motivation

2 Attack Surface

3 The bug

4 The FastMalloc Allocator

5 Exploitation

6 Conclusion & Future work

3/52

Who are we?

Mehdi Talbi
@abu_y0ussef

Security researcher @Synacktiv
Academia (in a previous life)
Vulnerability research & exploitation

Quentin Meffre
@0xdagger

Security researcher @Synacktiv
Vulnerability research & exploitation

Synacktiv

Offensive security company
Based in France
~70 Ninjas
We are hiring !!!

www.synacktiv.com
www.synacktiv.com

4/52

Introduction

Disclaimer

This research is done purely out of curiosity and presented for educational purposes.
This research does not help/support/enable/endorse to break the copyright law.

5/52

Introduction

Motivation

Active console hacking community…
.. but only few public exploits

Goal

A walk through of a 0-Day WebKit Exploit
How hard is it to exploit a vulnerability on the PS4?

Outline

1 Introduction & Motivation

2 Attack Surface

3 The bug

4 The FastMalloc Allocator

5 Exploitation

6 Conclusion & Future work

7/52

PS4 attack surface

Userland

FreeBSD KernelWIFI BLUETOOTH

Browser

USB

Gamesaves

8/52

PS4 attack surface
Exploit chain

Typical exploit chain : Webkit exploit → Kernel exploit

Webkit
Exploit

Kernel
Exploit

Attacking the browser

WebKit-based browser
Sandboxed
No JIT
No modern mitigations

Gigacage
StructureID randomization

ASLR. Weak? Partial ?
… And no debug

9/52

WebKit exploits

CVE-2018-4386

Found by Lokihardt (from P0)
A.k.a Bad-Hoist exploit by @Fire30_
Last known public exploit
Arbitrary Read/Write primitives
Works on 6.00-6.72 firmwares

CVE-2018-4441

Found by Lokihardt (from P0)
Exploit by @SpecterDev
Arbitrary Read/Write primitives
Works on 6.00-6.20 firmwares

More exploits …

For older firmwares (< 6.xx)
By @qwertyoruiopz, @SpecterDev, @CTurt, …

https://twitter.com/Fire30_
https://twitter.com/specterdev
https://twitter.com/qwertyoruiopz
https://twitter.com/specterdev
https://twitter.com/CTurtE

10/52

Kernel exploits

CVE-2020-7457

Reported by @theflow0
Kernel Read/Write primitives
Reachable from WebKit Sandbox
Present in firmware 7.02 and 6.xx
Used in conjunction with Bad-Hoist exploit

Berkeley Packet Filter vulnerability

Discovered and exploited by @qwertyoruiopz
Works on firmwares up to 5.07.
Excellent write-up by @SpecterDev

https://twitter.com/theflow0/
https://twitter.com/qwertyoruiopz
https://twitter.com/specterdev

Outline

1 Introduction & Motivation

2 Attack Surface

3 The bug

4 The FastMalloc Allocator

5 Exploitation

6 Conclusion & Future work

12/52

Introducing the bug (1/2)

Presentation

Vulnerability in WebKit DOM engine
Triggered by our internal fuzzers
Impacts all PS4 firmwares (and PS Vita as well) prior to 8.00
Reported to Sony through their Bug Bounty Program
Awarded 2500$
Fixed on Webkit : 11 Sept. 2020

13/52

Introducing the bug (2/2)

The vulnerable code

Use-After-Free in WebCore::ValidationMessage::buildBubbleTree method
Extra dereference while making a weak pointer
ValidationMessage could be destroyed during a layout update
updateLayout runs user registered JS callbacks

void ValidationMessage::buildBubbleTree()
{

/* ... */

auto weakElement = makeWeakPtr(*m_element);

document.updateLayout(); // [1] call user registered JS events

if (!weakElement || !m_element->renderer())
return;

adjustBubblePosition(m_element->renderer()->absoluteBoundingBoxRect(), m_bubble.get());

/* ... */
}

14/52

Fixing the code (1/2)

The so close fix

void ValidationMessage::buildBubbleTree()
{

/* ... */
+
+ auto weakElement = makeWeakPtr(*m_element);
+

document.updateLayout();

+ if (!weakElement || !m_element->renderer())
+ return;

adjustBubblePosition(m_element->renderer()->absoluteBoundingBoxRect(), m_bubble.get());

/* ... */
}

15/52

Fixing the code (2/2)

The good fix

Avoid doing layout update in ValidationMessage::buildBubbleTree

void ValidationMessage::buildBubbleTree()
{

/* ... */
-
- auto weakElement = makeWeakPtr(*m_element);
-
- document.updateLayout();
-
- if (!weakElement || !m_element->renderer())
- return;
-
- adjustBubblePosition(m_element->renderer()->absoluteBoundingBoxRect(), m_bubble.get());

/* ... */

+ if (!document.view())
+ return;
+ document.view()->queuePostLayoutCallback([weakThis = makeWeakPtr(*this)] {
+ if (!weakThis)
+ return;
+ weakThis->adjustBubblePosition();
+ });
}

16/52

The vulnerable path

reportValidity

buildBubbleTree

deleteBubbleTree

JS Callback

Free
ValidationMessage

Instantiate
ValidationMessage

Layout
Update

5s

0s

Destroy
ValidationMessage

UAF
ValidationMessage

html input

onfocus

17/52

Triggering the bug (1/2)

First Attempt

1 Register a JS event (e.g. onfocus) on some input text field.
2 Instanciate a ValidationMessage object

→ Fire-up a timer to call buildBubbleTree
→ Run user registered JS events

3 Destroy ValidationMessage instance on JS callback
4 No crashs !!

reportValidity sets the focus on input
user JS callback called too early.

PS4 exploit

https://pwnme.org/

onfocus input

document.body.delete(input) ;

ValidationMessage destruction

input.setCustomValidity("pwn");
input.reportValidity();
input.autocus = true;

onload

ValidationMessage Instanciation

18/52

Triggering the bug (2/2)

Solution

1 Register a JS event handler handler1 on input1
2 Instanciate a ValidationMessage (on input1)

focus is set on input1 → handler1 is executed
handler1 sets the focus elsewhere (input2)

3 Set handler2 as new handler for focus event on input1
4 handler2 is executed while running JS user callback from buildBubbleTree

Destroy ValidationMessage instance

5 PS4 browser crashs and restarts

PS4 exploit

https://pwnme.org/

onfocus (1) input1

input2

onfocus (2)

function handle2() {
 document.body.delete(input) ;
}

ValidationMessage Destruction

input1.setCustomValidity("pwn");
input1.reportValidity();
input1.setAttribute("onfocus","handle2()");
input1.autocus = true;

onload

ValidationMessage Instanciationfunction handle1() {
 input2.focus();
}

19/52

Crash !

20/52

Debugging the bug (1/2)

Problem

No debugging capabilities on PS4
All we get are crashes :-(

Option 1 : Setup a similar environment

Install a FreeBSD box
Compile WebKit sources from doc.dl.playstation.net
→ Helpful BUT working exploit on our env does not fully work on PS4
MORE DEBUG

https://doc.dl.playstation.net/doc/ps4-oss/webkit.html

21/52

Debugging the bug (2/2)

Option 2 : Debugging a 0-day with a 1-day

Get insights on memory mappings
Dump the content on allocated pages
→ Use bad-hoist exploit by @Fire30_ :

(+) Read/Write primitives
(+) Addrof/fakeobj primitives
(-) Works on 6.xx firmware only
(-) Adds some noise on heap shaping
(-) Reliability

https://twitter.com/Fire30_

22/52

Anatomy of a vulnerable object

ValidationMessage object

Instantiated by reportValidity() (fastMalloc’ed)
Accessed by buildBubbleTree()
Destroyed by deleteBubbleTree()

m_element

m_message

m_messageHeading

m_messageBody

m_timer

m_bubble

ValidationMessage

HTMLElement

HTMLElement accessed after layout update

instantiated after layout update

23/52

Surviving an (inevitable) crash (1/3)

Back from user JS callback

2 UAFs : this andm_element are freed
But we still have a reference onm_element

Crash on first virtual call (onm_bubble)
Situation : Not comfortable

m_element

m_message

m_messageHeading

m_messageBody

m_timer

m_bubble

ValidationMessage

Set to NULL

Deleted. Reference not cleared

Exploitability

1 A memory Leak, Or
2 … An ASLR Bypass

24/52

Surviving an (inevitable) crash (2/3)

Bypassing ASLR

Heap spraying → objects end-up allocated at a predictable location !!
Spraying ~ 2MB is enough to predict a heap address

Require a prior knowledge on the memory mapping
Works on 6.xx firmware
May work on 7.xx. More on this later …

25/52

Surviving an (inevitable) crash (3/3)

Surviving the crash

Spray HTMLElement obj. (e.g. HTMLTextAreaElement)
Shape the heap → Reuse ValidationMessage Obj.

HTMLTextAreaElement

HTMLTextAreaElement

HTMLTextAreaElement

...

m_element

m_message

m_messageHeading

m_messageBody

m_timer

m_bubble

ValidationMessage

26/52

Exploitation primitive

Vulnerable path epilogue

void ValidationMessage::deleteBubbleTree()
{

if (m_bubble) {
m_messageHeading = nullptr;
m_messageBody = nullptr;
m_element->userAgentShadowRoot()->removeChild(*m_bubble);
m_bubble = nullptr;

}
m_message = String();

}

Exploitation primitive

nullptr assignement on refcounted classes are overloaded
→ refcount decrement on multiple controlled ValidationMessage pointer fields
UAF → Arbitrary Decrement (refcount decrement)
Exploitable
Requires multiple heap shaping/spraying stages

Outline

1 Introduction & Motivation

2 Attack Surface

3 The bug

4 The FastMalloc Allocator

5 Exploitation

6 Conclusion & Future work

28/52

Webkit Allocator

Many allocators

FastMalloc : standard allocator
IsoHeap : sort each allocation using its type to mitigate Use-After-Free

Used by the DOM engine

Garbage Collector : used to allocate JSObject(s)
IsoSubspace : same as the IsoHeap but used in the Javascript engine
Gigacage : provide mitigation to prevent out-of-bound R/W on specific objects

Disabled on PS4

29/52

The Primary Heap Allocator

Overview

Heap is made of chunks
Chunk split into pages (4 kB)
Page divided into lines (256 Bytes)
Line holds several objects
Each page serves allocations for same-sized obj.

Obj N

Obj 2

Obj 1

Line N

Line 2

Line 1

Page N

Page 2

Page 1

...

Chunk N

Chunk 1

30/52

FastMalloc (1/2)

The Fast Path

Bump Allocator (per size class)

--m_remaining;
char* result = m_ptr;
m_ptr += m_size;
return result;

31/52

FastMalloc (2/2)
The Slow Path

No more available free slots → Refill allocator :
1 From cache BumpRangeCache (fast path)
2 From newly allocated page (slow path)

After processing previously released obj.

Refilling the allocator - The slow path

Allocate a new page
1 Pick it from cache (another one)
2 Pick the last released page from

the last allocated chunk

Fill allocator with the first free
contigous lines
Fill the cache with the rest of the
freed lines Free Line

Free Line

Free Line

Free Line

... BumpRangeCache

BumpAllocator

Page

Line

allocated obj
released obj

released obj

32/52

Deallocation

Deallocation

Released objects are not made immediately available → pushed in a dedicated vector
(m_objectLog).
Released objects are processed ifm_objectLog reaches its maximal capacity (512)
Chunks/Pages/Lines are refcounted
Chunks/Pages/Lines are released if refCount == 0

Outline

1 Introduction & Motivation

2 Attack Surface

3 The bug

4 The FastMalloc Allocator

5 Exploitation

6 Conclusion & Future work

34/52

Exploiting UAF (1/3)

Shaping the heap

1 Allocate N/2 of objects O
sizeof(O) = sizeof(ValidationMessage)

2 Instanciate a ValidationMessage Obj
3 Allocate N/2 of objects O

Obj. O
Obj. O
Obj. O
Obj. O

ValidationMessage
Obj. O
Obj. O
Obj. O
Obj. O

More Obj. O
...

More Obj. O
...

Li
ne

35/52

Exploiting UAF (2/3)

Shaping the heap

1 Delete few objects O around ValidationMessage
2 Destroy ValidationMessage object

Line released → Page cached

Target

...

...

Li
ne

36/52

Exploiting UAF (3/3)

Shaping the heap

Spray few objects T to get back ValidationMessage :
E.g. spray with ArrayBuffer(ValidationMessageSize)

ArrayBuffer'
Contents

More
ArrayBuffer'
Contents

...

ArrayBuffer'
Contents

Va
lid
at
io
nM

es
sa
ge

m_message

m_messageBody

m_bubble

m_element

m_messageHeading

m_timer

A
rr
ay
B
uf
fe
r'

C
on
te
nt
s

More
ArrayBuffer
Contents

...

37/52

Initial memory leak

Memory leak

m_messageBody,m_messageHeading &m_timer instantiated after obj. reuse
m_timer is “fastMalloc’ed”

→ Guess the address of objects allocated on the same page

m_element

m_message

m_messageHeading

m_messageBody

m_timer

m_bubble

ValidationMessage

38/52

Arbitrary decrement primitive

Exploitation

Corrupt them_messageHeading pointer
Target : obj with length and data field
Confuse some obj length field with
m_messageHeading refcount
Misaligned write on length field → Enlarge
size of data buffer
→ Relative read/[write] primitive.

m_element

m_message

m_messageHeading

m_messageBody

m_timer

m_bubble

ValidationMessage

00 00 00 XX

Data

Length

refcount field

39/52

Exploitation strategy

ASLR Bypass

Obj. Reuse

Relative Read
Primitive

Relative R/W
Primitive

Code Execution

Arbitrary R/W
Primitive

40/52

Relative read primitive (1/2)

Goal

Leak the address of JSC allocated obj. (JSArrayBufferView)

How

1 Spray heap with multiple StringImpl
Obj :

Before/After Timer allocation leak
sizeof(Timer) = sizeof(StringImpl)

2 Use arbitrary decrement on
StringImpl length’s field

3 → read beyond data frontier in
fastMalloc heap

Timer

refcount
length
data ptr

flags

data

More
StringImpl

...

More
StringImpl

...

St
rin

gI
m
pl

41/52

Relative read primitive (2/2)

Leaking JSArrayBufferView pointers (1/2)

DOM objects and JS objects use two different allocators
We can’t access JSObject using our relative read

The JS builtins Object.defineProperties allocate two objects that store JSObject
references

Vector andMarkedArgumentBuffer are our target

static JSValue defineProperties(ExecState* exec, JSObject* object, JSObject* properties)
{

Vector<PropertyDescriptor> descriptors;
MarkedArgumentBuffer markBuffer;

/* ... */
JSValue prop = properties->get(exec, propertyNames[i]);
/* ... */
PropertyDescriptor descriptor;
toPropertyDescriptor(exec, prop, descriptor);
/* ... */
descriptors.append(descriptor); // [1] store JSValue reference on fastMalloc
/* ... */
markBuffer.append(descriptor.value()); // [2] store one more JSValue reference on fastMalloc

}

42/52

Relative read primitive (2/2)

Leaking JSArrayBufferView pointers (2/2) 1

1 Allocate multiple JSArrayBufferView
2 Get reference on fastMalloc heap using

Object.defineProperties
Both target objects are freed at the end of the
builtin
Must not re-use these allocations otherwise
we loose our references

3 Use relative read to find these references
We want a JSArrayBufferView that is allocated
after our relative read object to read its
content

refcount
length
data ptr

flags

data

St
rin

gI
m
pl

JSArrayBufferView ptr

JSArrayBufferView

...

...

1. Thanks @qwertyoruiopz for the Object.defineProperties technique

https://twitter.com/qwertyoruiopz

43/52

Relative read/write primitive

How

1 Run the exploit again
2 Use arbitrary decrement on leaked

JSArrayBufferView address
3 Enlarge size of backing buffer
4 → read/write primitive

m_lengthm_mode

m_structure

m_vector

m_butterfly

44/52

Arbitrary read/write primitive

How

Relative R/W primitive through JSArrayBufferView 1
→ corrupt JSArrayBufferView 2’s vector

Arbitrary R/W primitive through JSArrayBufferView 2

ArrayBuffer

m_lengthm_mode

m_structure

m_vector

m_butterfly

JSArrayBufferView 1
m_lengthm_mode

m_structure

m_vector

m_butterfly

...

JSArrayBufferView 2

45/52

Code execution

How

We can’t allocate RWX memory page on PS4
We can control RIP

We have a leak of a HTMLElement instance
Overwrite one vtable ptr of a HTMLElement
Call the JS method that will trigger the overwritten pointer

We can do code-reuse to implement the next stage
The old previous PS4 jailbreak used this method

46/52

Demo

2

2. image credit : TheRegisti

Outline

1 Introduction & Motivation

2 Attack Surface

3 The bug

4 The FastMalloc Allocator

5 Exploitation

6 Conclusion & Future work

48/52

Conclusion & Future work

Conclusion

Working WebKit exploit on 6.xx firmwares
Exploit available on Github https://github.com/Synacktiv

Exploit stability

Not really stable
Take ~11 sec to gain arbitrary R/W

Improvements

The exploit reliability could be improved
The ASLR bruteforce could be more deterministic

Our spray mixed fastMalloc and IsoHeap pages
It happens that we guess the address of the wrong virtual page

We could find a better exploitation path that avoid triggering two times the vulnerability

https://github.com/Synacktiv

49/52

What about 7.xx firmwares (1/2)

Problem

ASLR bypass not working on 7.xx firmwares
Cannot survive to crash during obj. reuse :

Requires prior knowledge on memory mapping

50/52

What about 7.xx firmwares (2/2)

Solution

Bruteforce ASLR
→ Guess address of sprayed HTMLElement objs.

Plug a Raspberry Pi (detected as a keyboard)
Hit Enter keystroke at periodical time (5s)

→ Automatically reload exploit after a crash

No results so far :-(

51/52

Acknowledgements

Thanks to

Synacktiv
For letting us do the research

Our colleagues
For all the help while developing the exploit

BlackHat
For the great event

You
For your attention !

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

	Introduction & Motivation
	Attack Surface
	The bug
	The FastMalloc Allocator
	Exploitation
	Conclusion & Future work

