

2 / 32

Whoami

 Eloi Benoist-Vanderbeken

 @elvanderb on twitter

 Working for Synacktiv

 Offensive security company
 90 ninjas
 3 departments: pentest, reverse engineering, development
 Pass The Salt sponsor!

 Reverse engineering technical leader

 30 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!

4 / 32

JailBreak detection

 iOS

 Closed operating system
 No easy way to get root
 JailBreaks bypass iOS security to get (almost) full access

 JailBreak detection

 Used by banking applications and games
 To make sure that the environment is “safe”…
 …or to block cheats/cracks

 Security researchers need to

 Assess / reverse protected applications

5 / 32

iOS specificities

 Signature
 All the code must be signed by Apple (enforced by the system)
 All the data is also signed (enforced by the App Store)

 Memory protection

 W^X
 Only WebContent process can use JiT pages

 No side loading

 “Apps may not […] download, install, or execute code which introduces or
changes features or functionality of the app”

 Public API

 “Apps may only use public APIs”
 Theoretically enforced by the App Store review process
 Actually only used to block malicious tracking methods or deprecated/buggys

APIs

6 / 32

Frida

 https://frida.re

 “Dynamic instrumentation toolkit for developers, reverse-engineers,
and security researchers”

 Allows you to inject JavaScript to instrument any process

 iOS / Android / Windows / macOS / Linux / QNX...

 Lots of features

 Lots of bindings (.NET, Python, Node.js, Swift…)

 Low level C API

 Well known by Pass The Salt aficionados

 PTS 2020 - Why are Frida and QBDI a Great Blend on Android?
 PTS 2018 - Radare2 + Frida: Better Together

7 / 32

Debugging an iOS app

 Without a JailBreak
 With ptrace (lldb / frida) → app needs the get-task-allow entitlement

 By injecting code (frida) → app needs to be repackaged

And you can only do data only instrumentation
 In both case, you need to resign the application…

 … but it has a lot of side effect

Different Team ID

File are modified

 With a JailBreak
 No entitlements are required

 Frida is able to attach to any process

Except system ones on post A12 iPhones because of PPL

9 / 32

The target

 A banking app

 Immediately crash when launched on a jailbroken device
 Exception Type: EXC_BAD_ACCESS (SIGSEGV)

 Exception Subtype: KERN_INVALID_ADDRESS at 0x0000000000000200

 Executable is quite large
 31MB

 Nothing special at first sight
 Methods name are not obfuscated

 Strings are in cleartext

 We tried a few scripts¹
 But without luck

1: most notably this one: https://blog.spacepatroldelta.com/a?ID=01600-8a224e7e-6ceb-4e65-88b9-4545d6523275

https://blog.spacepatroldelta.com/a?ID=01600-8a224e7e-6ceb-4e65-88b9-4545d6523275

10 / 32

Around the crash…

11 / 32

Around the crash…

12 / 32

Around the crash…

13 / 32

Around the crash…

14 / 32

Around the crash…

15 / 32

Syscalls

 Syscalls are directly executed
 400+ syscalls

 Hooking APIs is not sufficient

 Not very compliant with the “Apps may only use public APIs” policy…

 Strings are decrypted on the fly
 Integrity checks

 Impossible to just find and replace blacklisted paths

 What we would like to do
 Intercept all the syscall with Frida

 Manipulate the arguments

 Replace the return value

16 / 32

Interception with Frida

 Classically used to intercept function arguments or return values

 Or to completely replace its implementation

Examples are from the doc: https://frida.re/docs/javascript-api/

https://frida.re/docs/javascript-api/

17 / 32

Interception with Frida

 But can also be used to intercept arbitrary instructions

 Useful to dump process state in the middle of a
function…

 But not magic nor perfect
 May have to patch multiple instructions to redirect execution flow

 May trash registers (an issue is open)

18 / 32

Using breakpoints

 Frida also allows to intercept exceptions!

 Replace all the syscall with breakpoints
 Ensure that we only patch one instruction

 Catch the exception to intercept all the syscalls

 Modify the context to emulate them

19 / 32

Patch all the syscalls

20 / 32

The nasty crash…

 After a few tries we implemented several syscalls

 In parallel we found that normal function are also used

 Process always crashed just after the checks
 Invalid deref, exit(0), objc_msgSend with invalid pointers etc.

 Easy to find the check

 But then the process started to crash…

 … this time with trashed PC / LR
 No easy way to find the underlying test

21 / 32

Stalker

 Frida has a Dynamic Binary Instrumentation engine
 Stalker

 Can be used to log all the basic blocks executed

 Idea
 Run the app until the last successfully bypassed check

 Trace all the basic blocks

 Wait for the program to crash

 Make sure to use sync method
 Frida loses the buffered messages when the app crashes

 This quickly gave us the culprit
 An API that we weren’t hooking yet

22 / 32

Stalker

23 / 32

Protections

 Try to find JailBreak files
 open, utimes, stat, pathconf, stat64, fopen

 Both syscalls and functions

 Try to block/detect debuggers
 ptrace(PT_DENY_ATTACH);

 Check if the parent pid is launchd
 getppid() == 1

 Try to detect if the rootfs is writable
 getfsstat64, statvfs

25 / 32

A generic API

 A generic interface to hook both functions and syscalls

26 / 32

A generic API

 Handle special cases

28 / 32

Other techniques

 Try to load an invalid signature
 fcntl(F_ADDSIGS);

 Check if some JailBreak libraries are loaded in your process
 /usr/lib/substitute-inserter.dylib for example

 Can use dlopen / memory scanning / dyld internal structures etc.

 Check if your process is instrumented
 Check code integrity

CRC, derive constants from the code, check API entries, etc.
 Time code execution

 Try to detect Frida

 Check signature state
 Via csops(CS_OPS_MARKKILL)

 Crash later
 Use a global context

 Put the crash long after the detection

 Complicate the backtracing

31 / 32

Future of iOS instrumentation

 Harder and harder to attack iOS devices
 Pointer signature (PAC)

Per process and per Team ID keys

A lot of kernel data pointers are now signed
 API hardening

Impossible to manipulate a system process even with its task port
 Sandboxing

More and more kernel API are sandboxed
 ioctl, fcntl, syscalls, necp etc.

More and more services are sandboxed
 Isolation

Kernel allocations segregation

 Apple not only kills bugs but also exploit techniques

 JailBreaks are more and more precious

32 / 32

PPL

 All the memory management is done in a special CPU state
 Impossible to patch the page tables with an arbitrary kernel write

 PPL also protect userland services
 PPL knows all the system services

Hashes are hardcoded in its data
 Forbid to inject third party executable code in a system process

 Could be deployed for all the processes
 If they don’t have a special entitlement

 Still possible to manipulate the process…
 With data only manipulation

 Or by using hardware breakpoints

 …but not that easy nor handy
 Needs to sign pointers with the distant process key

 Not an infinite number of hardware breakpoint

 All the tool will have to be recoded

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

