
AppJailLauncher

Mastho (@masthoon) from Synacktiv⛩️

SSTIC Challenge

• Windows pwnable !

• Spawned by AppJailLauncher

Source: https://thalium.github.io/blog/posts/sstic_infra_windows/

AppJailLauncher is akin to a simple version of xinetd for
Windows but with sandboxing enabled for the spawned
child processes. The sandboxing is accomplished
via AppContainers.

https://thalium.github.io/blog/posts/sstic_infra_windows/
https://docs.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation

AppContainer Isolation

• Isolate application from logon user, devices, files, network & window

• Create a new unique “user”: AppContainer SID for an application

• Capabilities to allow access to specific objects

• Less Privileged AppContainer (LPAC): restricted AC

AppJailLauncher

• Create an AppContainer profile with no capability

• Allow read access to the flag (cmdline parameter /key)

• Job to limit process execution time (cmdline parameter /timeout)

• On connection:
• Spawn the challenge process in the AC (with Low Integrity)

• Redirect stdin, stdout, stderr to the client socket

AppJailLauncher Security

The SSTIC organizers forked AppJailLauncher and made some improvements:

✓Creates temporary new AC SID on connection (10 min timeout)
• Previously, all the spawned challenges shared the same AC SID so after RCE, a malicious

player can access other players processes (DoS)

✓Limits resources by default:
• Execution to 2 minutes
• Memory to 100 MB of RAM
• Maximum of 2 parallel processes

• Temporary writable folders for players (one for each player)
❑Not reviewed

From https://thalium.github.io/blog/posts/sstic_infra_windows/

https://thalium.github.io/blog/posts/sstic_infra_windows/

What ?

Thalium Blogpost

Vulnerability

Basically you still have access to the console

// EXTENDED_STARTUPINFO_PRESENT | CREATE_SUSPENDED

AppJailLauncher exploit plan

• Console on Windows (condrv) uses multiple handles
• \Input (stdin) is inherited

• \Output (stout, stderr) are inherited

• \Reference is duplicated by the kernel at process creation (passed in ProcessParameters)

• \Connect is created at process creation to use input/output using \Reference handle

• To interact with Input/Output, you need a valid \Connect handle

• So you can control the parent console

• Exploit plan:
• Send a Control+C event to close AppJailLauncher

• Write a command to \Input and enjoy unsandboxed code execution!

Wait a minute!

• https://docs.microsoft.com/en-us/windows/console/console-buffer-
security-and-access-rights

https://docs.microsoft.com/en-us/windows/console/console-buffer-security-and-access-rights

Microsoft made console open source

• Integrity level is checked to block write access to Console Input ☹

• https://github.com/microsoft/terminal/blob/main/src/server/ProcessPolicy.cpp#L27

ConsoleProcessPolicy ConsoleProcessPolicy::s_CreateInstance(const HANDLE hProcess)
{

bool fCanReadOutputBuffer = false;
bool fCanWriteInputBuffer = false;
// First check AppModel Policy:
LOG_IF_FAILED(Microsoft::Console::Internal::ProcessPolicy::CheckAppModelPolicy(hToken.get(), fIsWrongWayBlocked));

// If we're not restricted by AppModel Policy, also check for Integrity Level below our own.
if (!fIsWrongWayBlocked)
{

LOG_IF_FAILED(Microsoft::Console::Internal::ProcessPolicy::CheckIntegrityLevelPolicy(hToken.get(), fIsWrongWayBlocked));
}

// If we're not blocking wrong way verbs, adjust the read/write policies to permit read out and write in.
if (!fIsWrongWayBlocked)
{

fCanReadOutputBuffer = true;
fCanWriteInputBuffer = true;

}
// ...
}

https://github.com/microsoft/terminal/blob/main/src/server/ProcessPolicy.cpp#L27

Let’s check the binary (21H1)

Where is the integrity level check ?

*_: Removed some names for simplicity

Exploitability

Windows Version Can access console Can write input buffer

Before 1803 No (AC can’t create connection) No

1803 Yes No (Check Integrity)

1809 Yes No (Check Integrity)

1903 Yes No (Check Integrity)

1909 Yes No (Check Integrity)

2004 Yes Yes

20H2 Yes Yes

21H1 (current version) Yes Yes

Windows 11 Yes No (Fixed again)

Writing to the console is fixed and disabled but escaping may be possible using other commands (AddConsoleAlias)

Demo !

Demo !

“ During the competition, this command was launched with Powershell. ”

Left as an exercise for the reader:

AppJailLauncher Fix

• Process Creation Flags
• CREATE_NEW_CONSOLE

• The new process has a new console, instead of inheriting its parent's
console (the default).

Without the parent console \Reference, inherited Input/Output are unusable.
Commit: 4764645 and dd37034

https://github.com/trailofbits/AppJailLauncher/commit/476464547edbde370e503b62f6a502a4c614eb47
https://github.com/trailofbits/AppJailLauncher/commit/dd370340f8a65bdc5b907d6cfa4e39f549364868

Microsoft Fix

• October 2021: CVE-2021-41346

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-41346

Links

• AppJailLauncher console escape exploit:
https://gist.github.com/masthoon/3b3b60dcb7f8687dc7336bcbe3236700

• POC CVE-2021-41346
https://gist.github.com/masthoon/85fab432527329f17a040b311fc1f2a2

https://gist.github.com/masthoon/3b3b60dcb7f8687dc7336bcbe3236700
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-41346
https://gist.github.com/masthoon/85fab432527329f17a040b311fc1f2a2

