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22Agenda

 Introduction
 Android Data Encryption solutions
 File Base Encryption and Security Model
 Encryption with Secure Element
 Conclusion
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33Presentation

 Jean-Baptiste Cayrou
 Security researcher @Synacktiv
 Vulnerability research & exploitation

 Synacktiv
 Offensive security company
 Offices in Paris, Toulouse, Lyon and Rennes
 ~100 Ninjas
 We are hiring!!!

https://twitter.com/Synacktiv
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44Introduction

 Our smartphones contain a lot of sensitive data
 Email and conversations
 Browsing history
 Photos and videos
 Bank accounts or cards

 These data must be protected if the device is lost or stolen
 This talk focuses on cold boot case

 Scenario with best protections
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55Android Devices

 Google develops the Android Open Source Project (AOSP)
 Android provides an architecture to help vendors to 

implement encryption
 Interface with Android code is generic
 Vendors must write the low level part (the hardware support)

 Final integration is performed by vendors
 This talk focuses on AOSP implementation guidelines
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66

Android Data Encryption
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77Android Encryption

 Data encryption is mandatory since Android 5.0 (2014)
 Only user data are encrypted
 Two kinds of encryption

 Full Disk Encryption (Android >= 4.4)
 File Based Encryption (Android >= 7.0)

 Most of encryption implementations use hardware security 
features
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88Full Disk Encryption

 Full Disk Encryption - FDE
 At boot, the system asks for a secret (PIN, Pattern, Password)
 Encryption is performed at block device level
 Will become deprecated 

 Starting with Android 10 new devices must use File Base 
Encryption

 Code will be removed in Android 13
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99File Base Encryption

 Available since Android 7.0 (2016)
 Encryption is performed on files and not on the entire block device
 Device Encrypted (DE) storage

 Encryption key is usually bound to the HW but loaded at boot 
without user secret

 Used to encrypt system data
 Credential Encrypted (CE) storage

 Encryption key is usually  bound to the HW and requires user 
credentials to be decrypted

 Used to encrypt user data 
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1010File Base Encryption

 Android Direct Boot
 Start some applications before the user has unlocked the device

 Using the Device Encrypted storage key
 E.g. the Alarm application
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1111

File Base Encryption and Security Model
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1212ARM TrustZone

 The CPU has two execution environments
 Secure World: Privileged mode. Run highly sensitive software

 TEE - Trusted Execution Environment
 Run Trusted Applications (TA)

 Cryptographic keys, DRM, Banking data, biometric sensors

 Normal World: Run Android kernel and applications
 REE - Rich Execution Environment

 If Normal Wold is compromised, cryptographic assets are still 
safe
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1313ARM TrustZone
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1414Encryption Overview

 Android Encryption logic is implemented by the 
SyntheticPasswordManager

 Based on an user secret (Pin, Password, Pattern)
 Cryptographic assets are protected by the TEE

 Theses assets are bound to the Hardware
 They are safe even if the normal world is compromised

 Key derivation must be performed on the device
 Request throttling to avoid online bruteforce

https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java
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1515High level Encryption Workflow
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1616Android authentication and keys

 Gatekeeper: Authentication by Pin/Pass/Pattern
 Backend implementation in the TEE (Gatekeeper TA)

 Fingerprint: Authentication by Fingerprint
 Backend implementation in the TEE (Fingerprint TA)

 Keystore: Key management
 Backend implementation in the TEE (Keymaster TA)

 Authentication tokens 
 Signed by Gatekeeper TA or Fingerprint TA
 Used by the Keystore to unwrap keys
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1818AuthToken and Keys

https://source.android.com/security/authentication

AT=AuthToken

https://source.android.com/security/authentication
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1919spblob TEE decryption
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2020Attacker point of view

 Several vulnerabilities are needed to break the encryption
 For online brute force (on the device)

 Compromise the Normal World
 Bypass the TEE anti bruteforce mechanism

 For offline brute force (out of the device)
 Compromise the Normal World
 Compromise the Secure World to extract spblob encryption key

 Even through all assets were extracted, the brute force hash 
rate will be limited by the derivation functions (scrypt, 
sha512)
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2121Attack Surface

 Vulnerabilities in early boot stages break secrets protection
 TEE attack surface is big

 TEE Kernel
 Indirect path using other Trusted Applications
 Secure Monitor
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Encryption with Secure Element
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2323Secure Element

 Some devices improve protection using SE
 Secure Element: External secure chip

 Microcontroller with high level security design
 Connected to CPU by I2C or SPI bus

 Used to store secrets
 HW crypto features (AES, Hashes)
 Minimal attack surface

 Tamper-resistant
 Protection against hardware attacks Google Titan and Titan M

https://security.googleblog.com/2018/10/building-titan-better-security-through.html
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2424Encryption with SE
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2525Attack Surface

 Vulnerabilities in early bootstages break assets protection
 TEE attack surface is big

 TEE Kernel
 Other Trusted Applications
 Secure Monitor

 Secrets are now safe even with a main CPU BootRom vulnerability!
 Secure Element attack surface is very limited!
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2626Conclusion

 The encryption model proposed by Android is well designed and  
built upon hardware protections

 A single vulnerability should not break encryption 
 Except BootRom vulnerabilities if no SE

 SE offers a physical separation with strong security design
 Weaknesses

 After a complete boot, FBE keys are manipulated by the kernel ...
 Final implementation is done by vendors

 No guarantee that Android guidelines are respected
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2727References

 Android Encryption
 Android Authentication
 SyntheticPasswordManager.java

https://source.android.com/security/encryption
https://source.android.com/security/authentication
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java
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https://www.linkedin.com/company/synacktiv
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Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/
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