
1

Android Encryption
THCON 2022

14/04/2022

2 / 27

22Agenda

 Introduction
 Android Data Encryption solutions
 File Base Encryption and Security Model
 Encryption with Secure Element
 Conclusion

3 / 27

33Presentation

 Jean-Baptiste Cayrou
 Security researcher @Synacktiv
 Vulnerability research & exploitation

 Synacktiv
 Offensive security company
 Offices in Paris, Toulouse, Lyon and Rennes
 ~100 Ninjas
 We are hiring!!!

https://twitter.com/Synacktiv

4 / 27

44Introduction

 Our smartphones contain a lot of sensitive data
 Email and conversations
 Browsing history
 Photos and videos
 Bank accounts or cards

 These data must be protected if the device is lost or stolen
 This talk focuses on cold boot case

 Scenario with best protections

5 / 27

55Android Devices

 Google develops the Android Open Source Project (AOSP)
 Android provides an architecture to help vendors to

implement encryption
 Interface with Android code is generic
 Vendors must write the low level part (the hardware support)

 Final integration is performed by vendors
 This talk focuses on AOSP implementation guidelines

6 / 27

66

Android Data Encryption

7 / 27

77Android Encryption

 Data encryption is mandatory since Android 5.0 (2014)
 Only user data are encrypted
 Two kinds of encryption

 Full Disk Encryption (Android >= 4.4)
 File Based Encryption (Android >= 7.0)

 Most of encryption implementations use hardware security
features

8 / 27

88Full Disk Encryption

 Full Disk Encryption - FDE
 At boot, the system asks for a secret (PIN, Pattern, Password)
 Encryption is performed at block device level
 Will become deprecated

 Starting with Android 10 new devices must use File Base
Encryption

 Code will be removed in Android 13

9 / 27

99File Base Encryption

 Available since Android 7.0 (2016)
 Encryption is performed on files and not on the entire block device
 Device Encrypted (DE) storage

 Encryption key is usually bound to the HW but loaded at boot
without user secret

 Used to encrypt system data
 Credential Encrypted (CE) storage

 Encryption key is usually bound to the HW and requires user
credentials to be decrypted

 Used to encrypt user data

10 / 27

1010File Base Encryption

 Android Direct Boot
 Start some applications before the user has unlocked the device

 Using the Device Encrypted storage key
 E.g. the Alarm application

11 / 27

1111

File Base Encryption and Security Model

12 / 27

1212ARM TrustZone

 The CPU has two execution environments
 Secure World: Privileged mode. Run highly sensitive software

 TEE - Trusted Execution Environment
 Run Trusted Applications (TA)

 Cryptographic keys, DRM, Banking data, biometric sensors

 Normal World: Run Android kernel and applications
 REE - Rich Execution Environment

 If Normal Wold is compromised, cryptographic assets are still
safe

13 / 27

1313ARM TrustZone

14 / 27

1414Encryption Overview

 Android Encryption logic is implemented by the
SyntheticPasswordManager

 Based on an user secret (Pin, Password, Pattern)
 Cryptographic assets are protected by the TEE

 Theses assets are bound to the Hardware
 They are safe even if the normal world is compromised

 Key derivation must be performed on the device
 Request throttling to avoid online bruteforce

https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java

15 / 27

1515High level Encryption Workflow

16 / 27

1616Android authentication and keys

 Gatekeeper: Authentication by Pin/Pass/Pattern
 Backend implementation in the TEE (Gatekeeper TA)

 Fingerprint: Authentication by Fingerprint
 Backend implementation in the TEE (Fingerprint TA)

 Keystore: Key management
 Backend implementation in the TEE (Keymaster TA)

 Authentication tokens
 Signed by Gatekeeper TA or Fingerprint TA
 Used by the Keystore to unwrap keys

18 / 27

1818AuthToken and Keys

https://source.android.com/security/authentication

AT=AuthToken

https://source.android.com/security/authentication

19 / 27

1919spblob TEE decryption

20 / 27

2020Attacker point of view

 Several vulnerabilities are needed to break the encryption
 For online brute force (on the device)

 Compromise the Normal World
 Bypass the TEE anti bruteforce mechanism

 For offline brute force (out of the device)
 Compromise the Normal World
 Compromise the Secure World to extract spblob encryption key

 Even through all assets were extracted, the brute force hash
rate will be limited by the derivation functions (scrypt,
sha512)

21 / 27

2121Attack Surface

 Vulnerabilities in early boot stages break secrets protection
 TEE attack surface is big

 TEE Kernel
 Indirect path using other Trusted Applications
 Secure Monitor

22 / 27

2222

Encryption with Secure Element

23 / 27

2323Secure Element

 Some devices improve protection using SE
 Secure Element: External secure chip

 Microcontroller with high level security design
 Connected to CPU by I2C or SPI bus

 Used to store secrets
 HW crypto features (AES, Hashes)
 Minimal attack surface

 Tamper-resistant
 Protection against hardware attacks Google Titan and Titan M

https://security.googleblog.com/2018/10/building-titan-better-security-through.html

24 / 27

2424Encryption with SE

25 / 27

2525Attack Surface

 Vulnerabilities in early bootstages break assets protection
 TEE attack surface is big

 TEE Kernel
 Other Trusted Applications
 Secure Monitor

 Secrets are now safe even with a main CPU BootRom vulnerability!
 Secure Element attack surface is very limited!

26 / 27

2626Conclusion

 The encryption model proposed by Android is well designed and
built upon hardware protections

 A single vulnerability should not break encryption
 Except BootRom vulnerabilities if no SE

 SE offers a physical separation with strong security design
 Weaknesses

 After a complete boot, FBE keys are manipulated by the kernel ...
 Final implementation is done by vendors

 No guarantee that Android guidelines are respected

27 / 27

2727References

 Android Encryption
 Android Authentication
 SyntheticPasswordManager.java

https://source.android.com/security/encryption
https://source.android.com/security/authentication
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java

28

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

