
1

MobSF for pentetration
tester

PassTheSalt 2022

2 / 36

22Who are we?

 Antoine Cervoise & Mickaël Benassouli
 Pentesters
 Not MobSF developers / maintainers

 Working for Synacktiv
 Offensive security
 100 ninjas: pentest, reverse engineering, development, incident

response
 We are hiring!

3 / 36

33Introduction

Source: Mobile Vs. Desktop Internet Usage (Latest 2022 Data) - BroadbandSearch https://www.broadbandsearch.net/blog/mobile-

desktop-internet-usage-statistics

4 / 36

44Agenda

 Reminder about mobile applications
 MobSF presentation
 Usecases for pentest

 Mobile application security review
 Mobile application analysis for red teaming

 MobSF limitations

5 / 36

55

Mobiles applications

6 / 36

66Mobile Application

 Nowadays
 Android
 iOS

 From the past
 Windows Phone
 Blackberry
 Window Mobile
 Symbian
 ...

7 / 36

77Android application

 APK (Android Package Kit)
 A ZIP file containing program's code (such as .dex files), libraries,

resources, assets, certificates, and manifest file
 Written in Java or Kotlin

 Frameworks exist in order to develop application in other languages
such as .NET with Xamarin

 AAB (Android App Bundle)
 AAB is push to the store, a personalized APK is downloaded from

the store on the device

8 / 36

88iOS application

 IPA
 A ZIP file containing application resources and binaries (machO

files)

9 / 36

99Mobile application review

 Dedicated penetration test
 Vulnerabilities in the mobile application or its dependencies

 https://owasp.org/www-project-mobile-security-testing-guide/
 Bypass of anti-cheat measure
 Entry points for penetration testing on the server

 Recon on a larger scope
 IP / URL / emails
 Credentials

10 / 36

1010

MobSF

11 / 36

1111MobSF

 Mobile SecurityFramework
 Licence: GPL 3
 Available on GitHub

 https://github.com/MobSF/Mobile-Security-Framework-MobSF
 Online analyzer

 https://mobsf.live/

12 / 36

1212MobSF Features

 Android review
 Application: Static and dynamic analysis
 Source code: Static analysis

 iOS review
 Application: Static analysis
 Source code: Static analysis

 Windows Phone App
 Static Analysis

13 / 36

1313MobSF installation

 Can be launched with docker / kubernetes

 Made python / Oracle JDK / macOS, Linux, Windows
 Hosted only

$ docker pull opensecurity/mobile-security-framework-mobsf:latest

$ mkdir -p $1/mobsf/

$ chmod -R 777 $1/mobsf

$ docker run -it --rm --name mobsf -p 8000:8000 -v
$1/mobsf/:/home/mobsf/.MobSF/ opensecurity/mobile-security-framework-
mobsf:latest

14 / 36

1414MobSF architecture

15 / 36

1515What are we missing

 Android dynamic analysis
 iOS source code review
 Windows applications review
 MobSF in CI/CD

16 / 36

1616

Usecases for Pentesters

17 / 36

1717Mobile application security review

 Demo time!

18 / 36

1818Mobile application security review

 App Score
 Quick overview for security score
 SDK Version and Android Code Version

 Application Signer Record
 Quickly identified issuer and verify certificate
 Here first check for countermeasure

 Cipher Algo for signing
 Code Signing

19 / 36

1919Mobile application security review

 Application Permissions
 What they need for working.
 Quickly identify dangerous permissions for pentester
 Attack scenarios for red teamer

 Manifest Analysis
 The manifest file record also reveals the security flaws found in

the target application
 Need to understand the architecture of the Android OS to assess

its actual criticalness
 A good starting point for analysis, but can be huge too

20 / 36

2020Mobile application security review

 Code Analysis
 Analysis result of java-code by a static analyzer
 Detect here countermeasures like

 Anti Root
 Pinning

 Can be false positive and need to be check by reading code
 NIAP Analysis

 Good conformity
 Pentester? Your first free vulnerabilities

21 / 36

2121Mobile application security review

 File / URLs / Text File
 Check if files is marked as infected
 URLs tab shows where the data have been send
 Where the information have been stored
 Text file, is a lazy grep for searching quick pattern in code

22 / 36

2222
Mobile application analysis

 for red teaming

 Use cases
 Penetration testing on a web application that provide a mobile

application
 Red Team

23 / 36

2323
Mobile application analysis

 for red teaming

 What are we looking for?
 IP addresses / Domains
 “hidden” folders
 Credentials (login/password, JWT, API keys…)

 Or just a “valid” User-Agent

24 / 36

2424
Mobile application analysis

 for red teaming

 MobSF feature - Reconnaissance
 URLs
 Emails
 Strings
 Hardcoded Secrets

 Look for specific patterns in strings names

25 / 36

2525Limits

 Hardcoded Secrets
 does not check into plist files (IPA)
 does not check for specific patterns in strings values

 BASIC BASE64
 proto://user:pass@domain

26 / 36

2626Let’s use the API

 Check for plist files
 Get plist files

 Grep for “password”

$ curl -s -X POST --url http://MOBSF/api/v1/report_json --data "hash=IPA_HASH" -H
"Authorization:$token" |jq ".file_analysis" |grep ".plist\"" |grep file_path |cut -d
"\"" -f 4

$ curl -s -X POST –url http://MOBSF/api/v1/view_source --data
"hash=IPA_HASH&type=ipa&file=$plist" -H "Authorization:$token" |grep -i password

27 / 36

2727Let’s use the API

 Check for patterns in strings values
 This can be done using

 APKLeaks (https://github.com/dwisiswant0/apkleaks) and Super
(https://github.com/SUPERAndroidAnalyzer/super)

 They are dedicated to APK
 Super requires Java to run

28 / 36

2828Automation

 Put everything in a (dirty) script

$ bash mobydeep.sh
Version: 1.0
Usage: mobydeep.sh http(s)://mobsf
Args:
 -h / --help : this help
 --get-hashes : get applications hashes from MobSF
 --plist IPA_hash : check for credentials in plists files
 --check-strings hash : check for credentials in strings values
 --check-secrets hash : return MobSF check for secrets in APP

29 / 36

2929Find credentials and keep digging

 Check for secrets in strings

$ mobydeep.sh http://localhost:8000 --check-strings
18*************************************42

"\"**BasicAuth\" : \"Basic UG************************************c=\"",

30 / 36

3030Find credentials and keep digging

 Looking for the secret usage into the source code

 if (new Connectivity(context).isNetworkAvailable()) {

 try {

 [...]

 Uri.Builder builder = new Uri.Builder();

builder.scheme("https").authority("webapp.customer.tld").appendPath(context.getR
esources().getString(R.string.HiddenFolder));

 [...]

 } catch (Exception e) {

 e.toString();

 }

31 / 36

3131Find credentials and keep digging

 Find the hidden folder
 Solution 1: Decompile the whole app and go look into

res/values/strings.xml
 Solution 2: Search it in MobSF

32 / 36

3232Automation issues

 False positive
 Auth BASIC detection
 Plist analysis
 Maybe more

 Patterns are handle into the script
 no external database/JSON file/whatever

33 / 36

3333Scan multiple applications

 Upload them all
 https://github.com/MobSF/Mobile-Security-Framework-MobSF/

blob/master/scripts/mass_static_analysis.py
 Scan them all

$ for app in $(bash mobydeep.sh http://127.0.0.1:8000 --
get-hashes); do
 echo $elmt; bash mobydeep.sh http://127.0.0.1:8000 --
check-strings $app;
done

34 / 36

3434

MobSF limitations
(as a pentester)

35 / 36

3535MobSF Limitations

 Development of new features needs to be able to develop
them

 No support for AAR (Android Archive) → libraries files
 Android dynamic analysis is not easy to configure

36

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

