
1

Pwning a Netgear router
from WAN - MitM style

25/06/2022

2 / 49

22Who are we?

 Speakers:
 0xMitsurugi – likes to reverse, exploit and pwn
 Antide (xarkes) Petit – likes that as well

 Team of many (110+) ninjas
 Located in Paris, Lyon, Rennes, Toulouse and all over France
 We’re (still) hiring!
 Reverse, Pentest, Development, Incident Response
 https://www.synacktiv.com

https://www.synacktiv.com/

3 / 49

33Summary

 What is Pwn2Own contest?
 Netgear attack surface
 Root-Me ELF ARM - Stack buffer overflow – basic 25 points
 Patch time!
 Final thoughts

4 / 49

44What is Pwn2Own?

 Hacking contest organized by the Zero Day Initiative (ZDI)
 Takes place three times a year
 Targets and rewards are revealed ~30 days before the contest

 Routers, TV, smartphones, printers, home automation, NAS…
 Patched until the last day

5 / 49

55What is Pwn2Own?

 You have to prove remote code execution, without
authentication
 Usually a remote shell
 Three tries only, each try has a 5 minutes max delay
 20 minutes given for attempts (setup, try, reset, retry..)
 If you are remote → impossible to patch exploit live

 If you win, you get the device and some $$
 You have to register a week before the contest

6 / 49

66What is Pwn2Own?

 Multiple contestants on the same target are randomly picked
for the tries order

 First pwn wins!
 Pwn2Own points
 $$

 If the next contestant has the same vuln → minor reward

7 / 49

77What is Pwn2Own?

 In general ZDI wants you to win
 They are very helpful and rather easy to reach and

communicate with
 We asked about the MitM scenario which did not seem

realistic… and it qualified for the contest!

8 / 49

88What is Pwn2Own?

9 / 49

99What is Pwn2Own?

10 / 49

1010Netgear Nighthawk R6700v3

 ~100€ on Amazon
 Basic home router
 Ethernet and WiFi
 Administration via Web
 Linux based router

 No shell access
 No serial console

11 / 49

1111Attack Surface

 Getting firmware
 Firmware is unencrypted
 Binwalk it and start analyzing

 A zip, containing a .chk containing a kernel and a squashfs
 Old Linux kernel ARM32 bits
 Mix of open source and closed source binaries

12 / 49

1212Attack Surface

 Get root shell
 Telnet-like service – daemon telnetenabled on UDP 23
 Send magic packet → Open telnet service
 Magic packet depends on root password, so no backdoor here
 Github project

 https://github.com/insanid/NetgearTelnetEnable
 Dynamic analysis

 Push a gdb/gdbserver
 Push a full powered busybox

https://github.com/insanid/NetgearTelnetEnable

13 / 49

1313Attack Surface

 LAN

WAN

14 / 49

1414Attack Surface - LAN

 Some services are listening
 WebAdmin
 Others...

 We decided to avoid this side:
 Many bugs have already been

found
 Usually targeted by other

teams

15 / 49

1515Attack Surface - LAN

 Quick glance
 WebAdmin: proprietary webserver, a lot of vulns already found
 NetUSB: remote printing
 Fileshare: afp
 Other: proprietary

 Spoiler
 A lot of vulns have been found during the Pwn2Own :-)

16 / 49

1616Attack Surface - WAN

 nmap: all ports closed
 No port == no vuln?
 No UDP too
 Time to take a closer look

 Linux RCE?
 Seems hard (and lot of work)
 Old Linux kernel but no obvious 1-day to use

17 / 49

1717Attack Surface - WAN

 What about MitM?
 The router fetches its own poison

 Tcpdump on the router gateway and analyze
 Some interesting DNS requests
 A GRIMM blogpost talks about a vulnerability wan-side
 A binary, “circled”, fetches updates regularly
 Started by default, even if not configured
 Is is worth analyzing it again?

https://blog.grimm-co.com/2021/09/mama-always-told-me-not-to-trust.html

18 / 49

1818Circled binary

 A binary launched by default during boot
 Used for parental control
 Fetches updates at boot, then every two hours
 In details:

 Fetch update index
 If needed, based on index, update databases
 All traffic is sent through HTTPS

 Fun fact: before GRIMM analysis, it was in plain HTTP...

19 / 49

1919Circled binary

 How to find vulnerabilities?
 “There are many paths to the top of the mountain, but the view is

always the same”
 Let follow the parsing

 The first file fetched is a text file, the index file

20 / 49

2020Circled binary

21 / 49

2121Circled binary

22 / 49

2222Circled binary

 Parsing text file is hard!

23 / 49

2323Circled binary

24 / 49

2424Circled binary

 Stack buffer overflow FTW!
 Smash the stack, profit, get fun and so on?
 Is it time for victory?
 Not so fast...

25 / 49

2525Circled binary

 WAIT!
 “circleinfo.txt” is downloaded through

HTTPS!
 Stack BOF are dead thanks to canary!
 What about defense in depth!
 And privilege separation!
 And, and, and...

26 / 49

2626Circled binary

 So long HTTPS:

 And no canary...
 Partial ASLR, and no PIE
 Runs with uid 0

27 / 49

2727ARM32 stack BOF

 Stack BOF – root-me - 25 points
 Trivial rewrite of return address and saved registers

 Can’t write null bytes, nor CR, nor space
 Binary is loaded at address 0x00008000: 2 null bytes at start
 This means doing ROP won’t be trivial as we the addresses require

null bytes on their most significant bytes
 0x0000deed is in Little Endian (because ARM) so

\xed\xde\x00\x00 will be in memory
 Due to the nature of strings, we can write a terminating null byte

28 / 49

2828ARM32 stack BOF

 Stack BOF – root-me - 25 points
 Trivial rewrite of return address and saved registers
 Finding a strategy

 Get root with one magic gadget
 OR

 Chaining gadgets (ROP) by using sscanf several times to rewrite all
addresses one by one

29 / 49

2929Circled binary

30 / 49

3030ARM32 stack BOF

 We can overflow the stack twice
 First overflow to overwrite PC
 Second overflow to add an extra null

byte somewhere in the stack (e.g. a
saved register)

 AAA(...)AAA<space>BBB(...)BBB
 AAAAAAA written in first variable
 BBBBBBB written in second variable

31 / 49

3131ARM32 stack BOF

 Let’s find a magic gadget!
 We’d like system(“<get_root.sh>”)
 Requires the address of a controlled string in memory

 sscanf input string ends up somewhere in heap memory
 Heap memory is at known address

 And in case of crash, the process restarts: unlimited tries to find
the address of the string

32 / 49

3232ARM32 stack BOF

 Finding the magic gadget @0xec78:
 ec78: e59d2084 ldr r2, [sp, #132] ; 0x84

 ec7c: e0840002 add r0, r4, r2

 ec80: ebffea06 bl 94a0 <system@plt>

 R2 register is known (fixed address)
 R4 is restored from stack
 So R0 is controlled

 if (R0-R2) have one null byte at max and no \x0d and no \x20

mailto:system@plt

33 / 49

3333ARM32 stack BOF

 We can overflow the stack twice
 First overflow will rewrite saved PC
 Second will rewrite saved R4

 The null byte terminating string helps
 The line will be written such as

 aaa(..)saved_PC<space>aaa(..)saved_R4
 → system(<chosen heap address>)

34 / 49

3434ARM32 stack BOF

 In the heap, we will find parts of our string!
 Write our shell script in the input string :-)

 Just write a one-liner without space (protip: ${IFS})
 Try to bruteforce the address of shell script in heap

 Remember: we have unlimited tries because binary relaunches
update function in case of crash

 But this is painfully slow…
 About 20 seconds for each try

35 / 49

3535ARM32 stack BOF

 Creating a shell “nopsled”
 a(…....)a;sh_script;saved_PC(space)a(…....)a;sh_script;saved_R4
 More than 256 ‘a’ each

 We can parse the heap with 256 bytes step
 Always jump somewhere in our “nopsled”
 Huge speedup (we only have a 5 minutes timeslot)
 Our tests shows that at boot, the address is (almost) predictable,

so using them as tries
 That’s a quick’n’dirty sploit

 (but, heh, it works 100% of the time...)

36 / 49

3636ARM32 stack BOF

 We put a controlled Debian as the internet gateway of the
Netgear

 Providing DHCP, DNS and HTTPS services
 We will answer for DHCP requests sent by Netgear
 We will answer for DNS requests sent by circled
 We will be the HTTPS update server
 We just have to generate a self-signed certificate

37 / 49

3737ARM32 stack BOF

 ZDI is OK with this setup
 Already done by other teams
 Not considered as an MitM by ZDI

 MitM is a special category
 But only when you MitM an admin (or user) connection

 In real world, it “may” work
 MitM DNS

 OR
 Redirect TCP to rogue HTTPS server

38 / 49

3838ARM32 stack BOF

 Update server is a simple python Flask app

39 / 49

3939ARM32 stack BOF

40 / 49

4040ARM32 stack BOF – raw exploit

41 / 49

4141ARM32 stack BOF – raw exploit

Return
address

Controlled
register

42 / 49

4242ARM32 stack BOF

43 / 49

4343ARM32 stack BOF

 And finally, a remote shell root!

44 / 49

4444Patch time

 Fixed curl

 Fixed overflow

45 / 49

4545Patch time!

 But obviously there
is still no:
 No hardening
 No canary
 No decent protection
 Still running uid 0

46 / 49

4646Fun fact

 Anti Debug?

47 / 49

4747Conclusion

 Reliable RCE on Netgear router
 Exploit available on Synacktiv GitHub

https://github.com/synacktiv/Netgear_Pwn2Own2021
 CVE-2022-27646 and CVE-2022-27644
 Patch your routers

 Pwn2Own is fun
 Diversity of targets
 Real-World targets
 Huge attack surface
 Good year for Synacktiv (11 participants and won Master of Pwn)

https://github.com/synacktiv/Netgear_Pwn2Own2021
https://github.com/synacktiv/Netgear_Pwn2Own2021

48 / 49

4848Questions?

And don’t forget: we’re hiring

49

Nos publications sur : https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

https://synacktiv.com/
https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

