
1

Pwning a Netgear router
from WAN - MitM style

25/06/2022

2 / 49

22Who are we?

 Speakers:
 0xMitsurugi – likes to reverse, exploit and pwn
 Antide (xarkes) Petit – likes that as well

 Team of many (110+) ninjas
 Located in Paris, Lyon, Rennes, Toulouse and all over France
 We’re (still) hiring!
 Reverse, Pentest, Development, Incident Response
 https://www.synacktiv.com

https://www.synacktiv.com/

3 / 49

33Summary

 What is Pwn2Own contest?
 Netgear attack surface
 Root-Me ELF ARM - Stack buffer overflow – basic 25 points
 Patch time!
 Final thoughts

4 / 49

44What is Pwn2Own?

 Hacking contest organized by the Zero Day Initiative (ZDI)
 Takes place three times a year
 Targets and rewards are revealed ~30 days before the contest

 Routers, TV, smartphones, printers, home automation, NAS…
 Patched until the last day

5 / 49

55What is Pwn2Own?

 You have to prove remote code execution, without
authentication
 Usually a remote shell
 Three tries only, each try has a 5 minutes max delay
 20 minutes given for attempts (setup, try, reset, retry..)
 If you are remote → impossible to patch exploit live

 If you win, you get the device and some $$
 You have to register a week before the contest

6 / 49

66What is Pwn2Own?

 Multiple contestants on the same target are randomly picked
for the tries order

 First pwn wins!
 Pwn2Own points
 $$

 If the next contestant has the same vuln → minor reward

7 / 49

77What is Pwn2Own?

 In general ZDI wants you to win
 They are very helpful and rather easy to reach and

communicate with
 We asked about the MitM scenario which did not seem

realistic… and it qualified for the contest!

8 / 49

88What is Pwn2Own?

9 / 49

99What is Pwn2Own?

10 / 49

1010Netgear Nighthawk R6700v3

 ~100€ on Amazon
 Basic home router
 Ethernet and WiFi
 Administration via Web
 Linux based router

 No shell access
 No serial console

11 / 49

1111Attack Surface

 Getting firmware
 Firmware is unencrypted
 Binwalk it and start analyzing

 A zip, containing a .chk containing a kernel and a squashfs
 Old Linux kernel ARM32 bits
 Mix of open source and closed source binaries

12 / 49

1212Attack Surface

 Get root shell
 Telnet-like service – daemon telnetenabled on UDP 23
 Send magic packet → Open telnet service
 Magic packet depends on root password, so no backdoor here
 Github project

 https://github.com/insanid/NetgearTelnetEnable
 Dynamic analysis

 Push a gdb/gdbserver
 Push a full powered busybox

https://github.com/insanid/NetgearTelnetEnable

13 / 49

1313Attack Surface

 LAN

WAN

14 / 49

1414Attack Surface - LAN

 Some services are listening
 WebAdmin
 Others...

 We decided to avoid this side:
 Many bugs have already been

found
 Usually targeted by other

teams

15 / 49

1515Attack Surface - LAN

 Quick glance
 WebAdmin: proprietary webserver, a lot of vulns already found
 NetUSB: remote printing
 Fileshare: afp
 Other: proprietary

 Spoiler
 A lot of vulns have been found during the Pwn2Own :-)

16 / 49

1616Attack Surface - WAN

 nmap: all ports closed
 No port == no vuln?
 No UDP too
 Time to take a closer look

 Linux RCE?
 Seems hard (and lot of work)
 Old Linux kernel but no obvious 1-day to use

17 / 49

1717Attack Surface - WAN

 What about MitM?
 The router fetches its own poison

 Tcpdump on the router gateway and analyze
 Some interesting DNS requests
 A GRIMM blogpost talks about a vulnerability wan-side
 A binary, “circled”, fetches updates regularly
 Started by default, even if not configured
 Is is worth analyzing it again?

https://blog.grimm-co.com/2021/09/mama-always-told-me-not-to-trust.html

18 / 49

1818Circled binary

 A binary launched by default during boot
 Used for parental control
 Fetches updates at boot, then every two hours
 In details:

 Fetch update index
 If needed, based on index, update databases
 All traffic is sent through HTTPS

 Fun fact: before GRIMM analysis, it was in plain HTTP...

19 / 49

1919Circled binary

 How to find vulnerabilities?
 “There are many paths to the top of the mountain, but the view is

always the same”
 Let follow the parsing

 The first file fetched is a text file, the index file

20 / 49

2020Circled binary

21 / 49

2121Circled binary

22 / 49

2222Circled binary

 Parsing text file is hard!

23 / 49

2323Circled binary

24 / 49

2424Circled binary

 Stack buffer overflow FTW!
 Smash the stack, profit, get fun and so on?
 Is it time for victory?
 Not so fast...

25 / 49

2525Circled binary

 WAIT!
 “circleinfo.txt” is downloaded through

HTTPS!
 Stack BOF are dead thanks to canary!
 What about defense in depth!
 And privilege separation!
 And, and, and...

26 / 49

2626Circled binary

 So long HTTPS:

 And no canary...
 Partial ASLR, and no PIE
 Runs with uid 0

27 / 49

2727ARM32 stack BOF

 Stack BOF – root-me - 25 points
 Trivial rewrite of return address and saved registers

 Can’t write null bytes, nor CR, nor space
 Binary is loaded at address 0x00008000: 2 null bytes at start
 This means doing ROP won’t be trivial as we the addresses require

null bytes on their most significant bytes
 0x0000deed is in Little Endian (because ARM) so

\xed\xde\x00\x00 will be in memory
 Due to the nature of strings, we can write a terminating null byte

28 / 49

2828ARM32 stack BOF

 Stack BOF – root-me - 25 points
 Trivial rewrite of return address and saved registers
 Finding a strategy

 Get root with one magic gadget
 OR

 Chaining gadgets (ROP) by using sscanf several times to rewrite all
addresses one by one

29 / 49

2929Circled binary

30 / 49

3030ARM32 stack BOF

 We can overflow the stack twice
 First overflow to overwrite PC
 Second overflow to add an extra null

byte somewhere in the stack (e.g. a
saved register)

 AAA(...)AAA<space>BBB(...)BBB
 AAAAAAA written in first variable
 BBBBBBB written in second variable

31 / 49

3131ARM32 stack BOF

 Let’s find a magic gadget!
 We’d like system(“<get_root.sh>”)
 Requires the address of a controlled string in memory

 sscanf input string ends up somewhere in heap memory
 Heap memory is at known address

 And in case of crash, the process restarts: unlimited tries to find
the address of the string

32 / 49

3232ARM32 stack BOF

 Finding the magic gadget @0xec78:
 ec78: e59d2084 ldr r2, [sp, #132] ; 0x84

 ec7c: e0840002 add r0, r4, r2

 ec80: ebffea06 bl 94a0 <system@plt>

 R2 register is known (fixed address)
 R4 is restored from stack
 So R0 is controlled

 if (R0-R2) have one null byte at max and no \x0d and no \x20

mailto:system@plt

33 / 49

3333ARM32 stack BOF

 We can overflow the stack twice
 First overflow will rewrite saved PC
 Second will rewrite saved R4

 The null byte terminating string helps
 The line will be written such as

 aaa(..)saved_PC<space>aaa(..)saved_R4
 → system(<chosen heap address>)

34 / 49

3434ARM32 stack BOF

 In the heap, we will find parts of our string!
 Write our shell script in the input string :-)

 Just write a one-liner without space (protip: ${IFS})
 Try to bruteforce the address of shell script in heap

 Remember: we have unlimited tries because binary relaunches
update function in case of crash

 But this is painfully slow…
 About 20 seconds for each try

35 / 49

3535ARM32 stack BOF

 Creating a shell “nopsled”
 a(…....)a;sh_script;saved_PC(space)a(…....)a;sh_script;saved_R4
 More than 256 ‘a’ each

 We can parse the heap with 256 bytes step
 Always jump somewhere in our “nopsled”
 Huge speedup (we only have a 5 minutes timeslot)
 Our tests shows that at boot, the address is (almost) predictable,

so using them as tries
 That’s a quick’n’dirty sploit

 (but, heh, it works 100% of the time...)

36 / 49

3636ARM32 stack BOF

 We put a controlled Debian as the internet gateway of the
Netgear

 Providing DHCP, DNS and HTTPS services
 We will answer for DHCP requests sent by Netgear
 We will answer for DNS requests sent by circled
 We will be the HTTPS update server
 We just have to generate a self-signed certificate

37 / 49

3737ARM32 stack BOF

 ZDI is OK with this setup
 Already done by other teams
 Not considered as an MitM by ZDI

 MitM is a special category
 But only when you MitM an admin (or user) connection

 In real world, it “may” work
 MitM DNS

 OR
 Redirect TCP to rogue HTTPS server

38 / 49

3838ARM32 stack BOF

 Update server is a simple python Flask app

39 / 49

3939ARM32 stack BOF

40 / 49

4040ARM32 stack BOF – raw exploit

41 / 49

4141ARM32 stack BOF – raw exploit

Return
address

Controlled
register

42 / 49

4242ARM32 stack BOF

43 / 49

4343ARM32 stack BOF

 And finally, a remote shell root!

44 / 49

4444Patch time

 Fixed curl

 Fixed overflow

45 / 49

4545Patch time!

 But obviously there
is still no:
 No hardening
 No canary
 No decent protection
 Still running uid 0

46 / 49

4646Fun fact

 Anti Debug?

47 / 49

4747Conclusion

 Reliable RCE on Netgear router
 Exploit available on Synacktiv GitHub

https://github.com/synacktiv/Netgear_Pwn2Own2021
 CVE-2022-27646 and CVE-2022-27644
 Patch your routers

 Pwn2Own is fun
 Diversity of targets
 Real-World targets
 Huge attack surface
 Good year for Synacktiv (11 participants and won Master of Pwn)

https://github.com/synacktiv/Netgear_Pwn2Own2021
https://github.com/synacktiv/Netgear_Pwn2Own2021

48 / 49

4848Questions?

And don’t forget: we’re hiring

49

Nos publications sur : https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

https://synacktiv.com/
https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

