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Pwning a Netgear router 
from WAN - MitM style
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22Who are we?

 Speakers:
 0xMitsurugi – likes to reverse, exploit and pwn
 Antide (xarkes) Petit – likes that as well

 Team of many (110+) ninjas
 Located in Paris, Lyon, Rennes, Toulouse and all over France
 We’re (still) hiring!
 Reverse, Pentest, Development, Incident Response
 https://www.synacktiv.com

https://www.synacktiv.com/
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33Summary

 What is Pwn2Own contest?
 Netgear attack surface
 Root-Me ELF ARM - Stack buffer overflow – basic 25 points
 Patch time!
 Final thoughts
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44What is Pwn2Own?

 Hacking contest organized by the Zero Day Initiative (ZDI)
 Takes place three times a year
 Targets and rewards are revealed ~30 days before the contest

 Routers, TV, smartphones, printers, home automation, NAS…
 Patched until the last day
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55What is Pwn2Own?

 You have to prove remote code execution, without 
authentication
 Usually a remote shell
 Three tries only, each try has a 5 minutes max delay
 20 minutes given for attempts (setup, try, reset, retry..)
 If you are remote → impossible to patch exploit live

 If you win, you get the device and some $$
 You have to register a week before the contest
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66What is Pwn2Own?

 Multiple contestants on the same target are randomly picked 
for the tries order

 First pwn wins!
 Pwn2Own points
 $$

 If the next contestant has the same vuln → minor reward
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77What is Pwn2Own?

 In general ZDI wants you to win
 They are very helpful and rather easy to reach and 

communicate with
 We asked about the MitM scenario which did not seem 

realistic… and it qualified for the contest!
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88What is Pwn2Own?
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99What is Pwn2Own?
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1010Netgear Nighthawk R6700v3 

 ~100€ on Amazon
 Basic home router
 Ethernet and WiFi
 Administration via Web
 Linux based router

 No shell access
 No serial console
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1111Attack Surface

 Getting firmware
 Firmware is unencrypted
 Binwalk it and start analyzing

 A zip, containing a .chk containing a kernel and a squashfs
 Old Linux kernel ARM32 bits
 Mix of open source and closed source binaries



  

12 / 49

1212Attack Surface

 Get root shell
 Telnet-like service – daemon telnetenabled on UDP 23
 Send magic packet → Open telnet service
 Magic packet depends on root password, so no backdoor here
 Github project

 https://github.com/insanid/NetgearTelnetEnable 
 Dynamic analysis

 Push a gdb/gdbserver
 Push a full powered busybox

https://github.com/insanid/NetgearTelnetEnable
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1313Attack Surface

 LAN

WAN
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1414Attack Surface - LAN

 Some services are listening
 WebAdmin
 Others...

 We decided to avoid this side:
 Many bugs have already been 

found
 Usually targeted by other 

teams
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1515Attack Surface - LAN

 Quick glance
 WebAdmin: proprietary webserver, a lot of vulns already found
 NetUSB: remote printing
 Fileshare: afp
 Other: proprietary

 Spoiler
 A lot of vulns have been found during the Pwn2Own :-) 
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1616Attack Surface - WAN

 nmap: all ports closed
 No port == no vuln?
 No UDP too
 Time to take a closer look

 Linux RCE?
 Seems hard (and lot of work)
 Old Linux kernel but no obvious 1-day to use
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1717Attack Surface - WAN

 What about MitM?
 The router fetches its own poison

 Tcpdump on the router gateway and analyze
 Some interesting DNS requests 
 A GRIMM blogpost talks about a vulnerability wan-side
 A binary, “circled”, fetches updates regularly
 Started by default, even if not configured
 Is is worth analyzing it again?

https://blog.grimm-co.com/2021/09/mama-always-told-me-not-to-trust.html
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1818Circled binary

 A binary launched by default during boot
 Used for parental control
 Fetches updates at boot, then every two hours
 In details:

 Fetch update index
 If needed, based on index, update databases
 All traffic is sent through HTTPS

 Fun fact: before GRIMM analysis, it was in plain HTTP...
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1919Circled binary

 How to find vulnerabilities?
 “There are many paths to the top of the mountain, but the view is 

always the same”
 Let follow the parsing

 The first file fetched is a text file, the index file
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2020Circled binary
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2121Circled binary
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2222Circled binary

 Parsing text file is hard!
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2323Circled binary
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2424Circled binary

 Stack buffer overflow FTW!
 Smash the stack, profit, get fun and so on?
 Is it time for victory?
 Not so fast...
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2525Circled binary

 WAIT!
 “circleinfo.txt” is downloaded through 

HTTPS!
 Stack BOF are dead thanks to canary!
 What about defense in depth!
 And privilege separation!
 And, and, and...
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2626Circled binary

 So long HTTPS:

 And no canary...
 Partial ASLR, and no PIE
 Runs with uid 0
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2727ARM32 stack BOF

 Stack BOF – root-me - 25 points
 Trivial rewrite of return address and saved registers

 Can’t write null bytes, nor CR, nor space
 Binary is loaded at address 0x00008000: 2 null bytes at start
 This means doing ROP won’t be trivial as we the addresses require 

null bytes on their most significant bytes
 0x0000deed is in Little Endian (because ARM) so

\xed\xde\x00\x00 will be in memory
 Due to the nature of strings, we can write a terminating null byte
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2828ARM32 stack BOF

 Stack BOF – root-me - 25 points
 Trivial rewrite of return address and saved registers
 Finding a strategy

 Get root with one magic gadget
 OR

 Chaining gadgets (ROP) by using sscanf several times to rewrite all 
addresses one by one
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2929Circled binary
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3030ARM32 stack BOF

 We can overflow the stack twice
 First overflow to overwrite PC
 Second overflow to add an extra null 

byte somewhere in the stack (e.g. a 
saved register)

 AAA(...)AAA<space>BBB(...)BBB
 AAAAAAA written in first variable
 BBBBBBB written in second variable
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3131ARM32 stack BOF

 Let’s find a magic gadget!
 We’d like system(“<get_root.sh>”)
 Requires the address of a controlled string in memory

 sscanf input string ends up somewhere in heap memory
 Heap memory is at known address

 And in case of crash, the process restarts: unlimited tries to find 
the address of the string
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3232ARM32 stack BOF

 Finding the magic gadget @0xec78:
        ec78:  e59d2084    ldr r2, [sp, #132] ; 0x84

        ec7c:  e0840002    add r0, r4, r2

        ec80:  ebffea06    bl 94a0 <system@plt>

 R2 register is known (fixed address)
 R4 is restored from stack
 So R0 is controlled

 if (R0-R2) have one null byte at max and no \x0d and no \x20

mailto:system@plt
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3333ARM32 stack BOF

 We can overflow the stack twice
 First overflow will rewrite saved PC
 Second will rewrite saved R4

 The null byte terminating string helps
 The line will be written such as

 aaa(..)saved_PC<space>aaa(..)saved_R4 
 →  system(<chosen heap address>)
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3434ARM32 stack BOF

 In the heap, we will find parts of our string!
 Write our shell script in the input string :-)

 Just write a one-liner without space (protip: ${IFS} )
 Try to bruteforce the address of shell script in heap

 Remember: we have unlimited tries because binary relaunches 
update function in case of crash

 But this is painfully slow… 
 About 20 seconds for each try
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3535ARM32 stack BOF

 Creating a shell “nopsled”
 a(…....)a;sh_script;saved_PC(space)a(…....)a;sh_script;saved_R4
 More than 256 ‘a’ each

 We can parse the heap with 256 bytes step
 Always jump somewhere in our “nopsled”
 Huge speedup (we only have a 5 minutes timeslot)
 Our tests shows that at boot, the address is (almost) predictable, 

so using them as tries
 That’s a quick’n’dirty sploit

 (but, heh, it works 100% of the time...) 
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3636ARM32 stack BOF

 We put a controlled Debian as the internet gateway of the 
Netgear

 Providing DHCP, DNS and HTTPS services
 We will answer for DHCP requests sent by Netgear
 We will answer for DNS requests sent by circled
 We will be the HTTPS update server
 We just have to generate a self-signed certificate
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3737ARM32 stack BOF

 ZDI is OK with this setup
 Already done by other teams
 Not considered as an MitM by ZDI

 MitM is a special category
 But only when you MitM an admin (or user) connection

 In real world, it “may” work
 MitM DNS

 OR
 Redirect TCP to rogue HTTPS server
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3838ARM32 stack BOF

 Update server is a simple python Flask app
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3939ARM32 stack BOF
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4040ARM32 stack BOF – raw exploit
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4141ARM32 stack BOF – raw exploit

Return 
address

Controlled 
register



  

42 / 49

4242ARM32 stack BOF



  

43 / 49

4343ARM32 stack BOF

 And finally, a remote shell root!
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4444Patch time

 Fixed curl

 Fixed overflow
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4545Patch time!

 But obviously there
is still no:
 No hardening
 No canary
 No decent protection
 Still running uid 0



  

46 / 49

4646Fun fact

 Anti Debug?
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4747Conclusion

 Reliable RCE on Netgear router
 Exploit available on Synacktiv GitHub

https://github.com/synacktiv/Netgear_Pwn2Own2021
 CVE-2022-27646 and CVE-2022-27644
 Patch your routers

 Pwn2Own is fun
 Diversity of targets
 Real-World targets
 Huge attack surface
 Good year for Synacktiv (11 participants and won Master of Pwn)

 

https://github.com/synacktiv/Netgear_Pwn2Own2021
https://github.com/synacktiv/Netgear_Pwn2Own2021
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4848Questions?

And don’t forget: we’re hiring
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Nos publications sur : https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

https://synacktiv.com/
https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
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