
1

Attacking Safari in 2022

2 / 39

22Who am I?

 Quentin Meffre (@0xdagger)
 Security researcher at Synacktiv
 Vulnerability research & Exploitation

 Synacktiv
 Offensive security company
 +100 ninjas
 We are hiring!

3 / 39

33Introduction

 Full chain on iPhone using the browser as entry point

4 / 39

44Introduction

 Steps to compromise Safari on the iPhone
 addrOf/fakeObj
 Arbitrary R/W
 Bypass PAC/APRR
 Overwrite JIT page code
 Arbitrary code execution!

 Apple hardened each step of a Safari exploit...

5 / 39

55History of Safari mitigations

 ézzézé

6 / 39

66SEPARATED_WX_HEAP

 The JIT page is mapped
twice
 One has protections RX
 Second has protections RW

 A function is jitted to copy
data in the JIT page
 The function is on a page

with X only protection
 The address of the RW JIT

page is inlined in this
function

 ézzézé

7 / 39

77SEPARATED_WX_HEAP

 Public bypass still works with this mitigation¹
 Build an arbitrary call primitive

 ROP/JOP
 Call the jitWriteSeparateHeaps function
 Write arbitrary code in the JIT page
 Profit!

1: https://www.sstic.org/media/SSTIC2019/SSTIC-actes/WEN_ETA_JB/SSTIC2019-Article-WEN_ETA_JB-benoist-vanderbeken_perigaud.pdf

 ézzézé

8 / 39

88APRR

 Hardware mitigation
 SEPARATED_WX_HEAP is replaced by APRR on supported

hardware
 Atomically switches the JIT page protections using a System

Register
 RX → RW → RX

 ézzézé

9 / 39

99APRR

 Hard jump in the middle of the
function¹
 The System Register value comes

from a R only page shared with the
kernel

 The system register value and the
value from the R only page are
compared

 Difference → crash
 Without CFI can be bypassed like

SEPARATED_WX_HEAP
1: https://github.com/phoenhex/files/blob/master/exploits/ios-11.3.1/pwn_i8.js

10 / 39

1010GigaCage

 TypedArray are JavaScript objects
 Often used to build arbitrary R/W

 TypedArray are allocated in a 32GB zone
 Followed by another 32G zone allocated with PROT_NONE

 The data buffer is now an offset to the cage and no more an
address

 Cannot R/W outside of the cage anymore…

11 / 39

1111GigaCage bypass

 Many public documentation about the GigaCage¹
 Some public bypasses still work...

 One known bypass is to use other objects
 More on this later in this presentation

 GigaCage is not enabled anymore on latest iOS versions
 But attackers still can’t use TypedArray to build arbitrary R/W...

1: https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html

 ézzézé

12 / 39

1212StructureID randomization

 JSObject inherits from the JSCell object

 The StructureID is an index
 Used to get the Structure of a JSObject

 Invalid StructureID → crash
 Before randomization the StructureID was incremental

 Easy to guess a valid StructureID
 Build fake objects without crashing

 ézzézé

13 / 39

1313After StructureID randomization

 Randomization is added to the StructureID

 Signature is checked every time a JSObject property is
accessed...
 … but sometimes it is not!¹
 Leads to StructureID randomization bypass

 StructureID randomization has been removed
 StructureID uses low 32 bits of Structure address

1: https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-
Randomization-With-Generic-And-Old-School-Methods.pdf

 ézzézé

14 / 39

1414PAC

 Pointer Authentication Code
 Hardware mitigation
 Introduced in ARMv8.3-A
 Prevents an attacker from corrupting sensitive pointers

 Signature is added to some pointers
 Corrupting a pointer without signing it correctly often leads to a

crash

 ézzézé

15 / 39

1515PAC

 New ARM instructions used in Safari
 PAC*: Add signature to a pointer
 AUT*: Check and remove signature from a pointer
 XPAC*: Remove signature from a pointer
 RETA*: Check X30 with context SP and return to X30 if the signature

is correct
 BRA* / BLRA*: Check signature and branch

 ézzézé

16 / 39

1616PAC

 Two kinds of pointers can be signed
 Data
 Instruction

 Two keys can be used for each kind
 Key A
 Key B

 A context is often used to avoid pointer substitution
 A pointer can also be signed with a null context...

 ézzézé

17 / 39

1717PAC

 The signature is stored in the top bits of a pointer
 The signature length depends on the key/pointer kind

 16 bits
 24 bits

 ézzézé

18 / 39

1818PAC

 Instruction pointers
 VTable function pointer => PACIA
 Return value stored on the stack => PACIB
 JIT Code pointer => PACIB

 Data pointers
 VTable pointer => PACDA
 Sensitive data pointer (TypedArray data pointer...) => PACDB
 JIT instructions => PACDB

 ézzézé

19 / 39

1919PAC

 What is not signed in Safari?

 ézzézé

20 / 39

2020PAC bypass

 Bypassing PAC is a security issue in itself
 Apple takes PAC bypasses very seriously

 Many PAC bypasses have been disclosed since PAC introduction
 Apple fixes each of them

 Hardware improvement
 Software improvement

 ézzézé

21 / 39

2121PAC bypass: design issue

 If a pointer authentication fails
 Signature is removed and one of the top bits is flipped
 Does not raise an exception

 If the pointer is signed again after the failed AUT*
 Correct signature is added, with a flipped bit
 PAC bypass: flip the bit again to get the correct signature

 EnhancedPAC is implemented first on A14 SoC
 Signing invalid pointers will discard the signature
 Can’t leak the signature anymore...

 ézzézé

22 / 39

2222PAC bypass: bruteforce

 The signature can still be bruteforced...
 ...but Apple killed this bypass again
 The compiler option -fptrauth-auth-traps is used

 Adds a check after all AUT* instructions
 If the signature given to the AUT* instruction is invalid → ABORT

 ézzézé

23 / 39

2323PAC bypass: bruteforce

 Apple added a new feature in the A15 SoC
 ARMv8.6-A FPAC extension
 If an AUT* instruction fails, an exception is now raised

 Apple killed this exploitation method with this feature

 ézzézé

24 / 39

2424PAC bypass: null context chained

 Initially, many pointers were signed with a null context
 A potential bypass could be to use null signed pointers in a JOP

chain
 Build powerful primitives

 Never seen publicly
 Since iOS 15 this attack has been almost killed

 Very few pointers are still signed with a null context

 ézzézé

25 / 39

2525PAC bypass

 More bypasses¹
 Unprotected code pointers
 Race condition with the JIT thread
 Blocking the JIT thread while copying data on the JIT page
 Signal handlers corruption

 All of these bypasses have been fixed

1: https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html

 ézzézé

26 / 39

2626PAC R/W

 PAC doesn’t sign a lot of sensitive data
pointers

 Some object can be wrapped into a JSObject
 DOMRect

 Contains 4 doubles
 Has methods to read and write these doubles

 Faking a wrapper to a DOMRect object
 Arbitrary R/W

 Method used by a public exploit¹

1: https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/

 ézzézé

27 / 39

2727PAC kill R/W method

 Method killed by iOS 15.4
 Some wrappers to sensitive wrapped objects are now signed

 Most of them manipulate floats/doubles
 Killed many arbitrary R/W methods

 ézzézé

28 / 39

2828JIT Code signature

 The JIT compilation can be done in another thread
 The assembly code is stored in a temporary buffer while doing

compilation
 The temporary buffer content is copied in the JIT page at the end of

the compilation
 Before JIT code signature

 Race the JIT thread to put arbitrary code in the temporary buffer
 Profit!
 But…

 ézzézé

29 / 39

2929JIT Code signature

 Apple introduced the JIT code signature
 Stop attackers from overwriting the JIT code buffer

 Software mitigation based on PAC
 Instructions stored in the temporary buffer are signed

 Each instruction signature generates a hash stored in the hash buffer
 Signed with previous hash and PACDB

 Signature is checked when the temporary buffer is copied in the
JIT page
 If the signature is invalid → Crash

 ézzézé

30 / 39

3030JIT Code signature PIN

 The hash used to sign the
next instruction was not
protected

 It is now signed with a
unique identifier (PIN)
 Each JIT compilation uses a

different PIN
 PIN informations are stored

in the JIT page
 An attacker can’t modify

them

 ézzézé

31 / 39

3131JITCage

 The A15 SoC brings a new complex mitigation
 The JITCage!

 The JITCage stops attackers from calling arbitrary functions
from the JIT page

 The JIT page is now mapped with a new flag
 MAP_JITCAGE?

 The XNU open-source project doesn’t have references about
this flag…

 ézzézé

32 / 39

3232JITCage

 ...but the KernelCache has references!

 ézzézé

33 / 39

3333JITCage

 The kernel sets new System Registers using
 The size of the JIT page
 The address of the JIT page
 Some unknown flags

 The KernelCache has no other information
 The interesting part of the JITCage is implemented in the A15

SoC

 ézzézé

34 / 39

3434JITCage

 The following instructions can’t be executed in the JITCage
 RET
 BR/BLR/BL
 SVC
 MRS/MSR

 If one tries to execute these instructions in the JITCage
 The processor raises an EXC_BAD_INSTRUCTION exception

 ézzézé

35 / 39

3535JITCage

 The PAC IA/IB keys are different in the JITCage
 Can’t sign instruction pointers in the JITCage

 PACIA doesn’t add signature if executed in the JITCage
 PACIB can only sign pointer that points into the JITCage
 PACD* seems unaffected by the JITCage

 ézzézé

36 / 39

3636JITCage

 The JIT code has to call functions outside of the JITCage
 Setting a System Register allows changing IA key

 Instruction pointers used by the JITCage are signed with the IA key
 Only done once when the JavaScript engine is initialized
 Can’t be done anymore after

 An attacker can’t easily call functions outside of the JITCage

 ézzézé

37 / 39

3737Conclusion 1/2

 Getting arbitrary code on latest iPhone involves finding:
 A vulnerability
 A new method to build arbitrary R/W
 A PAC bypass
 An APRR bypass
 A JITCage bypass

 One solution for attackers could be to implement the next stage
using JavaScript only...

 ézzézé

38 / 39

3838Conclusion 2/2

 2022 in short
 Yet another mitigation
 Yet other exploitation methods killed

 What to expect in the next years?
 Same as above?

 Maybe it’s time for attackers to find another entry point than
the browser…
 ...or maybe not? :-)
 JavaScript is a powerful engine to attack all those mitigations

39

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

