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Attacking Safari in 2022
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22Who am I?

 Quentin Meffre (@0xdagger)
 Security researcher at Synacktiv
 Vulnerability research & Exploitation

 Synacktiv
 Offensive security company
 +100 ninjas
 We are hiring!
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33Introduction

 Full chain on iPhone using the browser as entry point
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44Introduction

 Steps to compromise Safari on the iPhone
 addrOf/fakeObj
 Arbitrary R/W
 Bypass PAC/APRR
 Overwrite JIT page code
 Arbitrary code execution!

 Apple hardened each step of a Safari exploit...
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55History of Safari mitigations
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66SEPARATED_WX_HEAP

 The JIT page is mapped 
twice
 One has protections RX
 Second has protections RW

 A function is jitted to copy 
data in the JIT page
 The function is on a page 

with X only protection
 The address of the RW JIT 

page is inlined in this 
function
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77SEPARATED_WX_HEAP

 Public bypass still works with this mitigation¹
 Build an arbitrary call primitive

 ROP/JOP
 Call the jitWriteSeparateHeaps function
 Write arbitrary code in the JIT page
 Profit!

1: https://www.sstic.org/media/SSTIC2019/SSTIC-actes/WEN_ETA_JB/SSTIC2019-Article-WEN_ETA_JB-benoist-vanderbeken_perigaud.pdf
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88APRR

 Hardware mitigation
 SEPARATED_WX_HEAP is replaced by APRR on supported 

hardware
 Atomically switches the JIT page protections using a System 

Register
 RX → RW → RX
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99APRR

 Hard jump in the middle of the 
function¹
 The System Register value comes 

from a R only page shared with the 
kernel

 The system register value and the 
value from the R only page are 
compared

 Difference → crash
 Without CFI can be bypassed like 

SEPARATED_WX_HEAP
1: https://github.com/phoenhex/files/blob/master/exploits/ios-11.3.1/pwn_i8.js



  

10 / 39

1010GigaCage

 TypedArray are JavaScript objects
 Often used to build arbitrary R/W

 TypedArray are allocated in a 32GB zone
 Followed by another 32G zone allocated with PROT_NONE

 The data buffer is now an offset to the cage and no more an 
address

 Cannot R/W outside of the cage anymore…
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1111GigaCage bypass

 Many public documentation about the GigaCage¹
 Some public bypasses still work...

 One known bypass is to use other objects
 More on this later in this presentation

 GigaCage is not enabled anymore on latest iOS versions
 But attackers still can’t use TypedArray to build arbitrary R/W...

1: https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
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1212StructureID randomization

 JSObject inherits from the JSCell object

 The StructureID is an index
 Used to get the Structure of a JSObject

 Invalid StructureID → crash
 Before randomization the StructureID was incremental

 Easy to guess a valid StructureID
 Build fake objects without crashing
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1313After StructureID randomization

 Randomization is added to the StructureID

 Signature is checked every time a JSObject property is 
accessed...
 … but sometimes it is not!¹
 Leads to StructureID randomization bypass

 StructureID randomization has been removed
 StructureID uses low 32 bits of Structure address

1: https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-
Randomization-With-Generic-And-Old-School-Methods.pdf
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1414PAC

 Pointer Authentication Code
 Hardware mitigation
 Introduced in ARMv8.3-A
 Prevents an attacker from corrupting sensitive pointers

 Signature is added to some pointers
 Corrupting a pointer without signing it correctly often leads to a 

crash
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1515PAC

 New ARM instructions used in Safari
 PAC*: Add signature to a pointer
 AUT*: Check and remove signature from a pointer
 XPAC*: Remove signature from a pointer
 RETA*: Check X30 with context SP and return to X30 if the signature 

is correct
 BRA* / BLRA*: Check signature and branch
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1616PAC

 Two kinds of pointers can be signed
 Data
 Instruction

 Two keys can be used for each kind
 Key A
 Key B

 A context is often used to avoid pointer substitution
 A pointer can also be signed with a null context...
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1717PAC

 The signature is stored in the top bits of a pointer
 The signature length depends on the key/pointer kind

 16 bits
 24 bits
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1818PAC

 Instruction pointers
 VTable function pointer => PACIA
 Return value stored on the stack => PACIB
 JIT Code pointer => PACIB

 Data pointers
 VTable pointer => PACDA
 Sensitive data pointer (TypedArray data pointer...) => PACDB
 JIT instructions => PACDB
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1919PAC

 What is not signed in Safari?
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2020PAC bypass

 Bypassing PAC is a security issue in itself
 Apple takes PAC bypasses very seriously

 Many PAC bypasses have been disclosed since PAC introduction
 Apple fixes each of them

 Hardware improvement
 Software improvement
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2121PAC bypass: design issue

 If a pointer authentication fails
 Signature is removed and one of the top bits is flipped
 Does not raise an exception

 If the pointer is signed again after the failed AUT*
 Correct signature is added, with a flipped bit
 PAC bypass: flip the bit again to get the correct signature

 EnhancedPAC is implemented first on A14 SoC
 Signing invalid pointers will discard the signature
 Can’t leak the signature anymore...
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2222PAC bypass: bruteforce

 The signature can still be bruteforced...
 ...but Apple killed this bypass again
 The compiler option -fptrauth-auth-traps is used

 Adds a check after all AUT* instructions
 If the signature given to the AUT* instruction is invalid → ABORT 
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2323PAC bypass: bruteforce

 Apple added a new feature in the A15 SoC
 ARMv8.6-A FPAC extension
 If an AUT* instruction fails, an exception is now raised

 Apple killed this exploitation method with this feature
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2424PAC bypass: null context chained

 Initially, many pointers were signed with a null context
 A potential bypass could be to use null signed pointers in a JOP 

chain
 Build powerful primitives

 Never seen publicly
 Since iOS 15 this attack has been almost killed

 Very few pointers are still signed with a null context
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2525PAC bypass

 More bypasses¹
 Unprotected code pointers
 Race condition with the JIT thread
 Blocking the JIT thread while copying data on the JIT page
 Signal handlers corruption

 All of these bypasses have been fixed

1: https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
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2626PAC R/W

 PAC doesn’t sign a lot of sensitive data 
pointers

 Some object can be wrapped into a JSObject
 DOMRect

 Contains 4 doubles
 Has methods to read and write these doubles

 Faking a wrapper to a DOMRect object
 Arbitrary R/W

 Method used by a public exploit¹

1: https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/
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2727PAC kill R/W method

 Method killed by iOS 15.4
 Some wrappers to sensitive wrapped objects are now signed

 Most of them manipulate floats/doubles
 Killed many arbitrary R/W methods
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2828JIT Code signature

 The JIT compilation can be done in another thread
 The assembly code is stored in a temporary buffer while doing 

compilation
 The temporary buffer content is copied in the JIT page at the end of 

the compilation
 Before JIT code signature

 Race the JIT thread to put arbitrary code in the temporary buffer
 Profit!
 But…
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2929JIT Code signature

 Apple introduced the JIT code signature
 Stop attackers from overwriting the JIT code buffer

 Software mitigation based on PAC
 Instructions stored in the temporary buffer are signed

 Each instruction signature generates a hash stored in the hash buffer
 Signed with previous hash and PACDB

 Signature is checked when the temporary buffer is copied in the 
JIT page
 If the signature is invalid → Crash
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3030JIT Code signature PIN

 The hash used to sign the 
next instruction was not 
protected

 It is now signed with a 
unique identifier (PIN)
 Each JIT compilation uses a 

different PIN
 PIN informations are stored 

in the JIT page
 An attacker can’t modify 

them
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3131JITCage

 The A15 SoC brings a new complex mitigation
 The JITCage!

 The JITCage stops attackers from calling arbitrary functions 
from the JIT page

 The JIT page is now mapped with a new flag
 MAP_JITCAGE?

 The XNU open-source project doesn’t have references about 
this flag…
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3232JITCage

 ...but the KernelCache has references!
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3333JITCage

 The kernel sets new System Registers using
 The size of the JIT page
 The address of the JIT page
 Some unknown flags

 The KernelCache has no other information
 The interesting part of the JITCage is implemented in the A15 

SoC



 ézzézé

34 / 39

3434JITCage

 The following instructions can’t be executed in the JITCage
 RET
 BR/BLR/BL
 SVC
 MRS/MSR

 If one tries to execute these instructions in the JITCage
 The processor raises an EXC_BAD_INSTRUCTION exception
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3535JITCage

 The PAC IA/IB keys are different in the JITCage
 Can’t sign instruction pointers in the JITCage

 PACIA doesn’t add signature if executed in the JITCage
 PACIB can only sign pointer that points into the JITCage
 PACD* seems unaffected by the JITCage
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3636JITCage

 The JIT code has to call functions outside of the JITCage
 Setting a System Register allows changing IA key

 Instruction pointers used by the JITCage are signed with the IA key
 Only done once when the JavaScript engine is initialized
 Can’t be done anymore after

 An attacker can’t easily call functions outside of the JITCage
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3737Conclusion 1/2

 Getting arbitrary code on latest iPhone involves finding:
 A vulnerability
 A new method to build arbitrary R/W
 A PAC bypass
 An APRR bypass
 A JITCage bypass

 One solution for attackers could be to implement the next stage 
using JavaScript only...
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3838Conclusion 2/2

 2022 in short
 Yet another mitigation
 Yet other exploitation methods killed

 What to expect in the next years?
 Same as above?

 Maybe it’s time for attackers to find another entry point than 
the browser…
 ...or maybe not? :-)
 JavaScript is a powerful engine to attack all those mitigations
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https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/
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