Security of connected vehicles

David Berard and Vincent Dehors
david.berard@synacktiv.com
vincent.dehors@synacktiv.com

Synacktiv

Abstract. In the context of the Pwn20wn Vancouver 2022 and 2023
contests, the Synacktiv team looked into several embedded systems of
Tesla vehicles. The goal of this event is to find and report impactful
vulnerabilities and demonstrate realistic attack scenario.

Modern cars have more and more features and connectivity. The attack
surface increase and now the cars are fully reliant on electronic technology
as well. Therefore, the security of the car computers (ECUs) is taken
seriously by car manufacturers.

Whereas we have been able to demonstrate successful remote exploitation
of a Tesla cars in 2022 and 2023, this article shows how the modern
architecture makes these attacks complexe and less impactful. The hard-
ware and software architecture of Tesla vehicles will be described with
a focus on the security implications of the design choices made by the
manufacturer. This article is blue team oriented and will present generic
security principles and state of the art hardening applied on embbeded
systems.

This article additionally provides insights on how security researchers
can obtain the firmware and gain testing capabilities for some critical
components.

2 Security of connected vehicle

1 Introduction

As the automotive industry continues to produce increasingly con-
nected vehicles, a new range of risks and security concerns arise. Some
of these risks exist since years but are now taking a new dimension as
car technologies evolve. As early as 2014, security researchers have been
concerned by the automotive field [4] and the impact of connectivity in
those product. One particularity of automotive security if that there are a
wide range of attacker profiles, each exploiting different parts of the car.

One of the main risks with connected cars is car theft, which has always
been a concern even for non-connected cars. But attacks on connected
cars that enable theft can now be executed on a larger scale and with
greater ease.

A recent study [3] revealed that there are real-world attacks using
CAN injection to steal cars by connecting a device to the CAN bus at a
convenient, easily accessible location.

Keyless entry systems are more and more common in modern vehicles.
Therefore, car theft through relay attacks on this system is a common
problem, and there are many public researches on that.

Another important risk is the vehicle safety, car components are
connected together through various CAN buses. By gaining access to these
buses through hardware modification or by software attacks, attackers
may affect the safety of the vehicle and cause people injuries or material
damages.

The infotainment system has become one of the main component
of modern cars, its screen provides many features: car control, internet
connection, access to many external services. Like smartphones, this
system contains many personal data: accounts credentials, connection
tokens, browsing history, navigation history and even tokens to open the
owner’s garage. Gaining access to these data can facilitate attack that
extend beyond the vehicle itself, and can also be used to track the vehicle
position or for espionage activities.

Modern cars like Tesla ones also have many limitations enforced by
software. For example, some features like advanced autopilot can be
purchased during the vehicle life and do not require hardware modification
or going to a service center. Bypassing these limitations (hardware and
software) has always been the passion of some people, and they are sharing
their findings to a large community. That kind of modifications (or attacks
in some cases) must be taken into account by the car manufacturer in its
security model.

D. Berard, V. Dehors 3

2 Security and hardware design

This chapter focuses on the different components embedded in the
Tesla car computer bundle containing the Infotainment system.
This package contains several PCBs:
— The board containing the Infotainment system
— Intel or AMD SoC
— Memories containing firmware and user data
— Audio system
— Smart Ethernet switch
— Security Gateway
— WiFi/Bluetooth connectivity
— The board hosting the autopilots
— The connectivity card for LTE connection and emergency calls

Security Gateway

SDCARD

Fig. 1. Electronic board containing the Infotainment and the security Gateway

These different components are interconnected via Ethernet. Addition-
ally, a diagnostic port located in the glove box allows direct connection to
the switch.

2.1 Security from the hardware design

The security is considered from the hardware design, with most compo-
nents chosen to ensure certain security features (Secure boot, encryption,

4 Security of connected vehicle

Ethernet switch

= =
w w
2 2
© [
]]
& T
E =
]]

management
ETHERNET
ETHERNET

ETHERNET

Infotainment Gateway - Autopilots diagnostic

Connectivity
card DABHD/FM

WIFI/BT CHIP
BCM4359

Fig. 2. Hardware architecture

filtering, etc.). The design also takes into account the possibility of com-
promised ancillary components.

For example, links to external interfaces (e.g., LTE card or Tuner) are
filtered at multiple levels, and one of these levels is the Ethernet switch,
which has filtering tables to allow only necessary communications for
operation.

The main purpose of such architecture is to isolate critical components
and make them harder to reach. The basic idea is to isolate the multimedia
part of the car from safety-critical ECUs but modern architecture goes
further by adding multiple layers of isolation and filtering. Of course, car
manufacturers have to deals with other constraints like manufacturing
costs or even physical constraints when they are designing the ECUs and
their networks.

2.2 How several hardware versions are managed

Tesla has several hardware version for the Infotainment and autopilots
boards, even on the Tesla Model 3. These boards are upgraded over time.
Depending on the production date, the electronic components differ.

The Infotainment board was initially based on an Intel System On
Chip (SoC) and has undergone several revisions. Today, new versions
come with an AMD Ryzen SoC, but the system architecture remains very
similar to the Intel SoC-based boards.

D. Berard, V. Dehors)

Tesla is working to standardize the Infotainment+Autopilot ECU
across different models, so the Model S, Model X, Model Y, and Model 3
now share the same hardware and software.

The autopilot section is based on ARM Nvidia SoCs and has also
undergone several revisions.

The security Gateway, responsible for providing Infotainment access
to the CAN via Ethernet, is embedded on the Infotainment PCB, and it
is a PowerPC architecture chip present in all hardware revisions.

Ancillary components embedded on this PCB, such as the Ethernet
switch and connectivity cards (WiFi/Bluetooth), may vary depending
on the hardware versions. The rest of this document focuses on the
components embedded on the ECU based on the Intel SoC.

The LTE connectivity card varies within the same hardware version
and is an external card connected to Ethernet (and other buses) via an
M.2 connector on the PCB.

Despites all these hardware versions, several good practices are fol-
lowed:

— Even if the hardware changes, the overall architecture design is

kept as much as possible.

— The software is shared between all these versions and even between

different car models

— There are still software updates for older hardware versions. The

cost of maintaining multiple versions is lowered by the fact that all
cars have the same software architecture and code bases.

3 Infotainment

The infotainment system is the computer for the multimedia related
features which also manage the User Interface. For example, this system
controls the main touch screen. As there are a lot of features and user-
controled inputs in this system, this is an interesting target for an attacker.
Even if the infotainment is well isolated in the car network, its security is
still important because:

— The infotainment can do legitimate actions on the vehicle that can
be considered as important in term of security, for example opening
the trunk.

— This system contains sensitive user data.

— Compromising this system allows an attacker to reach a new attack
surface in other critical part of the vehicle, for example the Security
Gateway.

6 Security of connected vehicle

This section shows how the design of the Tesla infotainment limit these
risks and greatly increase the cost of impactful attacks.

3.1 External memories

The usage of complex processors or System On Chips (SoCs) requires
additional external components that are normally included in micro-
controlers like external RAM and ROM memories. Therefore, there are
multiple memory chips in the ECU’s PCB that can contains useful infor-
mation.

Persistent data storage (ROM) is often the first target for a black box
assessment because it could allow an attacker to:

— Extract the firmware: this is the software running on the ECU.
With these data, one can understand how the system works by
reverse engineering and start looking for vulnerabilities.

— Extract user or car data: persistent memory often hold secrets or
sensitive data. Sometimes, manufacturers implement encryption to
protect those data.

— Execute code in the ECU by writing (or replacing) the ROM chip
with a modified software, it may be possible to execute custom
code. Gaining a first code execution, even with physical access, is a
huge help looks for vulnerablities, debug and develop exploitation
programs. To prevent this risk, manufacturers can choose to imple-
ment a secure-boot which checks the authenticity and the integrity
of executed programs.

On the Tesla Infotainment, the Intel SoC uses an external eMMC
flash. The difficulty to extract the content of this kind of component
depends on its physical caracteristics and technology. For example, BGA
chips are harder to dump as the pins are not physically available without
unsoldering the chip. For the Pwn20wn 2022 contest, we had to keep the
Infotainment working so the eMMC has been extracted without being
unsoldered by communicating with the eMMC after the Intel SoC booted.
To prevent from voltage conflict on the MMC signals, the SoC has been
put in a alternative boot mode in which it does not use the eMMC. A
Linux-based small computer (SBC Beagle Bone Black) has been used
to communicate with this eMMC using the SDIO protocol allowing to
extract and write the content of this memory.

When dumping high-speed bus like for eMMC, a clean hardware setup
is required to prevent from electromagnetic signal perturbations. As our
setup involve long aerial wires, our sdio driver has been patched to use
the lowest frequency for this protocol.

D. Berard, V. Dehors 7

P143 G

Fig. 4. Setup to connect the SBC for eMMC communication

With the ability to read and write the eMMC, an attacker can analyze
its content but also can try to insert modified content. There are often
bugs that bypass the secure-boot if the attacker is able to write the ROM
memory. However, we did not find any on the Tesla model 3.

3.2 Secure boot and data encryption

The eMMC dump allows to understand how the infotainment boots
and how the software integrity is checked.

The analysis of the partition table shows the following scheme:

— Partition "boot" (130MB): contains the Linux kernel and an initrd
in two files (bank A and B)

— Partition "rootfs-a" (2GB): contains all the applications in a
SquashFS filesystem

— Partition "rootfs-b" (2GB): same data as for "rootfs-a"

— Partition "lvm": a LVM volume which contains several partitions:

8 Security of connected vehicle

— Maps

Games and game data

Home (data of the infotainment applications) - Encrypted
Log and Var (configuration and logging files) - Encrypted

The update uses a A/B scheme: the Linux kernel and the rootfs are
written into the bank that is not currently used, and then the system
reboots on the new version by toggling active slots.

Sensitive data like personal user data and credentials used by the Tesla
services are stored in LVM encrypted partitions. The encryption key is
protected by the hardware and is unique per vehicle. To extract this key,
one needs to first execute (privileged) code on the Intel SoC.

The code integrity and authenticity is checked by a state of the art
secure-boot. Secure boot root key is programmed on the hardware and
cannot be extracted from the Intel SoC. They are used to check the
bootloader and start the chain of trust: each next software component is
checked:

— The bootloader is signed and verified.

— The Linux kernel is checked by the bootloader. The signature

encapsulates the initrd which is embedded in the kernel binary.

— The initrd mount eMMC partitions and use dm-verity on the

rootfs SquashF'S partition (which is also read-only)

— All the executables are located in this SquashF'S and data that are

not in this partition are considered untrusted.

— Games are a special case: they are packaged as SquashF'S files and

have their own dm-verity configuration.

To sum up, the secure boot feature is well implemented and ensure
that only authenticated software is started on the Infotainment. The
confidentiality of sensitive data is assured by the encryption and the
impossibility of executing untrusted code.

It is worth noting that there is nothing that manage automatically
the end of live of these sensitive data. For example, we bought multiple
ECUs on eBay which were probably coming from accidented vehicles. On
each, data from the previous users were still present and not deleted even
after powering up the Infotainment system. Some data like the history
of navigation or saved accounts were available directly on the graphical
interface. One of them even had a credit card information saved.

3.3 System and hardening

The Infotainment system is based on Linux. This is a Buildroot distri-
bution heavily customized by Tesla. All system applications are stored in

D. Berard, V. Dehors 9

Scott Bivd

Q. Search Destination 2
g
d

= ony siomog—

Googee

ap s 02023

Q
Q
Q
Q
¢ Il
Q
Q
o

Fig. 5. History of navigation of the previous user

© Controls O A <
= Pedals & Steering
4 Charging 3 B -
@ Autopilot _
@ Locks Q—J
- Lights 1 r
= -
Display u
U Trips

A Navigation
Full Self-Driving Capability Subscription

© safety $199.00/mo excl. tax
Credit Card:
K Service
+ Navigate on Autopilot
+ Auto Lane Change
4 Software * Autopark
- Summon
 Traffic Light and Stop Sign Control
A Upgrades Coming later this year

+ Autosteer on city streets

Fig. 6. Credit card of the previous user used to subscribe to Tesla services

the SquashFS partition (read-only and protected by dm-verity). The init
system is called "runit" and launches a lot of Tesla services directly after
the boot like the graphical interface applications.

10 Security of connected vehicle

The design features a well thought in-depth defense which relies on
several principles:

— Limit the attack surface

— Isolate and limit the applications rights

— Make vulnerabilities harder to exploit

The kernel configuration is a good example of attack surface limitation.
Indeed, only the useful options are enabled and everything else is disabled
directly from the compilation. This very light configuration limits the
attack surface for remote and local attack. In order to make the exploitation
harder, the configuration also includes all hardening options: KASLR,
hardened allocator (hardened freelist, random freelist, ...).

The userland applications have multiple security mecanisms. First,
each service runs with its own UID, with its own files and cannot interact
easily with other processes or with the system. The binaries are often
compiled with hardening options like using ASLR (PIE), having stack
cookies and fine-tuned mapping protections. However, there is no CFI
(Control Flow Integrity) present in the binaries.

3.4 Sandboxes

An important part of the defense in depth strategy relies on process

isolation through the use of sandboxes:

— Strong network filtering with iptables using rules based on process
UID. There is a whitelist for each outgoing connection for each
service, and the default rule is to deny the network output flow.

— Filtering of syscalls with Kafel (seccomp): only syscalls normally
used by the process are allowed. A malicious payload injected in
the program will not be able to use other system calls, greatly
limiting its attack surface for privilege escalation or exfiltrating
data.

— Usage of the LSM (Linux Security Module) Apparmor: a profile is
defined for each application, which restricts its network usage and
applies a whitelist for all file accesses (including special files like
drivers). Therefore, Apparmor also filters which other programs
can be executed by the sandboxed application.

— Usage of minijail to configure Linux namespaces for isolating pro-
cesses, filesystems, and network stack. For example, an application
which should not use the network will be isolated in a dedicated
empty network stack.

Not all programs have all the sandboxes. Some programs are not

sandboxed at all, while others, such as games or web browsers, use all the

D. Berard, V. Dehors 11

isolation mechanisms. Sandboxes are very effective to limit the impact
of a compromise and may be a unavoidable solution if the manufacturer
needs to include less trusted third-party software. Services that have a
remote attack surface should be sandboxed first as they are likely to be
the entry point in the system.

The configuration of these sandboxes is often based on whitelists: the
default behavior is to deny and only legitimate actions of a program
are allowed. For example, a service that does not have permission to
communicate on the network will be denied both incoming and outgoing
network packets by multiple sandboxes at once. If this service is only
allowed to listen on a TCP port, then only that particular communication
is authorized. Moreover, the rules of these sandboxes are very well detailled
to forbid anything that is abnormal. For example, using Kafel for syscall
filtering, argument values can be checked in the sandbox rule.

Escaping these sandboxes is very complex as each one limits the attack
surface to escape from one of the sandboxes. If there is a vulnerability,
to escape from a sandbox (for example, in the Linux kernel), only a few
applications will be able to access it.

3.5 Updates

The Tesla teams constantly work to correct known vulnerabilities
through regular updates. The OTA update system searches and downloads
updates from the Tesla backend automatically. As the Infotainment (and
other ECUs) cannot reboot when the user wants to use the car, the update
application is only triggered when the user choose to apply the update
through the user interface.

The update system has been entirely developed by Tesla and is not
based on open source software. The binary managing the update, called
ice-updater, is present on different ECUs and models of the manufacturer.
It is an interesting target for an attacker because it is privileged (root,
without sandbox) and offers a large surface from the network. However,
it has also been heavily audited and uses security-oriented programming
practices: all controllable sizes and inputs are checked multiple times and
there is no dynamic allocation. These kinds of practices drastically reduce
the risk of memory corruption bugs.

3.6 Infotainment attack surface

An Infotainment system has multiple interfaces that can be attacked
including from various network connections (diagnostic Ethernet port,

12 Security of connected vehicle

WiFi network, mobile connection), the touch screen, USB ports, and Blue-
tooth. In competitions such as Pwn20wn, initial conditions are described
in rules provided several months before the competition. There are two
types of attack scenarios: those that do not involve any user interaction
(zero-click) and those that require a user to be present in the car to perform
manipulations (such as pressing the screen or plugging in a USB drive).
Hardware attacks, however, are not allowed.

On Tesla cars, the attack surface accessible through the WiFi network
is quite small. The Infotainment services do not listen on this interface,
and firewall rules (Iptables) filter incoming and outgoing connections.
Moreover, a significant portion of communication with Tesla servers goes
through a dedicated encrypted tunnel established by a proprietary solution
(Hermes).

The above architecture shows a robust and mature security archi-
tecture. However, in recent years, at least four successful attacks have
been demonstrated on the Infotainment system: the team fluoroacetate at
Pwn20wn 2019, T-bone [2] (2020), and our participations in 2022 [1] and
2023.

Two attacks targeted the same component: ConnMan, the service
responsible for network management. It is open source and integrated
by Tesla into their Buildroot distribution. One might think that if this
software has been attacked twice in a row, it is due to poor code quality.
However, few vulnerabilities have been identified in this service, and it
has been sandboxed further after the T-bone [2] attack in 2020 and even
further after ours.

The main reasons we targeted this software is that it is in a critical
path of the architecture:

— It communicates with the outside world without authentication
(DHCP, DNS, HTTP). This is one of the few surfaces accessible to
an attacker from the WiFi network.

— The service needs to have some privileged rights because it manages
the network.

— It is active without user action. For example, it automatically
connects to "known" WiFi networks, making it part of the zero-
click scenario. In addition, there is a known network for all Teslas,
the Tesla Service network, whose credentials were obtained during
the dump of the eMMC.

The amount of code in this software is quite small, and Tesla only

compiles a small part of the open-source project, only the part necessary
to configure a WiFi network and check connectivity with an HT'TP request

D. Berard, V. Dehors 13

to their server. It reports the connectivity status and is controllable by
another application via DBUS. That’s how it communicates with the
graphical interface.

During Pwn20wn 2022, only one memory corruption vulnerability
(CVE-2022-32292) was used to obtain code execution in the context of
this service. This vulnerability allows modifying the value of a byte (0x0A
to 0x00) after the end of an allocation. Another double-free vulnerability
(CVE-2022-32293) was also used to improve the exploitation time, but it is
not necessary to obtain code execution. Thanks to the binary’s protection
mechanisms (mainly ASLR) and the reduction in surface in this service,
the exploitation was extremely long and took several months of work. After
obtaining a method of code execution in the context of Connman, it is
only possible to perform actions that are normally allowed for this service
due to the multiple sandboxes. But the service has two high-privileged
Linux capabilities: CAP_NET_ADMIN and CAP_NET RAW.

capability net_raw Allow to send raw packets
capability net_admin directly in network interface

network packet dgram
network netlink raw
network netlink dgram

Netlink interfaces attack surface .
Whole network config can be

2 kernel bugs found : changed (interface names,
routes, ...)
1x arbitrary kfree()

1x OOB write in kernel memory Minimalist kernel config :
cannot change iptables
Each can lead to LPE from connman

Fig. 7. Apparmor configuration for ConnMan

In the surface allowed by these sandboxes, Connman is able of using
SOCKET_RAW because it needs to issue DHCP requests. This feature
allows to communicate with other services and ECUs, which is normally
not accepted by the network sandbox. But iptables rules do not apply
to RAW sockets that inject packets into a lower-level layer in the Linux
kernel.

During the competition, this bypass of iptables rules was used to
communicate with the Secure Gateway and ask it to perform several
actions on the CAN (such as opening the car’s trunks, turning on the
headlights and activating wipers).

14 Security of connected vehicle

Moreover, the capability CAP_ NET ADMIN offers a significant at-
tack surface in the kernel. For example, ConnMan use the netlink APT to
communicate with the WiFi driver even if it is not an action it is supposed
to do. Indeed, the control of the WiFi driver is done by the wpa_ supplicant
service, but there is no mechanism in these sandbox technologies to filter
on the content of a netlink packet. Thus, a sandboxed program authorized
to use netlink can perform all possible actions on this API. However, Tesla
has removed a lot of kernel code thanks to a minimalist configuration. It
is not possible, for example, to modify iptables rules from netlink. Two
memory corruption bugs (CVE-2022-42430 and CVE-2022-42431) were
found in the Wifi driver’s netlink API. Each one allows for kernel code
execution and thus bypassing all Infotainment protections (root without
sandbox).

4 Ethernet network

4.1 Ethernet switch with filtering capabilities

The switch is a component on the PCB of the Infotainment system.
In versions based on Intel SoC, it is the Marvell 88ea6321. This is not
a simple Ethernet switch as it has the ability to filter packet depending
on rules stored in a table called TCAM. The Security Gateway ensures
the configuration of this switch via its MDIO bus. Numerous settings are
available, allowing Tesla to implement filtering on the Ethernet network
and to ensure that only the packets for normal operations pass through
the switch.

Filtering is configured on all switch ports. Thus, from the diagnostic
Ethernet port or even from a compromised component, the attack surface
towards other components is significantly reduced or even non-existent.

The analysis of the switch configuration can be done in two ways:

— Reverse engineering of the Security Gateway firmware

— Analysis of MDIO frames with a logic analyzer

We used the second method, as it allows to dump a complete configu-
ration from a startup (the configuration being applied by several software
components of the Security Gateway).

The documentation for the Marvell switch is subject to an NDA and is
not publicly available. The PINOUTs found in public documentation for
switches of the same family do not match the one observed on the board.
The location of the MDIO bus was found by probing the various tracks
that seemed compatible with this signal.

D. Berard, V. Dehors 15

115:455ms: 90 ps
+2ps +3ps +4ps +5 s +6 s +7 s +8ps +1ps +2ps

START C22| OP[RD] | PHY Address [0x15] REGADR[0x03] Data [0x3102]

A|A|A A A A|A|a|a

2 hidden channels
Drag to zoom

Fig. 8. MDIO bus signals

Fig. 9. MDIO bus position on the PCB (near the switch)

Although no public documentation describes the configuration pro-
tocol on MDIO, there is an implementation for Linux (drivers/net/d-
sa/mv88e6xxx). This can be studied to decode the various MDIO register
reads and writes.

16 Security of connected vehicle

4.2 TCAM

Filtering is ensured by the TCAM entries of the switch, decoding
MDIO frames allows to reconstruct these entries and obtain the filtering
rules.

tcam entry 0: src_port=3, dst_port=0, eth_type=0x0800,IPv4,TCP,
tcp_dport=22,

[...]

tcam entry 2: src_port=3, dst_port=0, eth_type=0x0800,IPv4,TCP,
tcp_dport=8080,

[...]

tcam entry 4: src_port=3, dst_port=0, eth_type=0x0800,IPv4,TCP,
tcp_dport=8081,

[...]

tcam entry 38: src_port=3, dst_port=DROP ip_src=192.168.90.60/32
tcam entry 39: src_port=3, dst_port=DROP ip_src=192.168.90.100/32
tcam entry 40: src_port=3, dst_port=DROP ip_src=192.168.90.103/32
tcam entry 41: src_port=3, dst_port=DROP ip_src=192.168.90.105/32
tcam entry 42: src_port=3, dst_port=DROP ip_src=192.168.90.104/32
tcam entry 43: src_port=3, dst_port=DROP ip_src=192.168.90.102/32
tcam entry 44: src_port=3, dst_port=DROP ip_src=192.168.90.30/32
[...]

Filtering is done by physical port. Rules are applied for each one to
restrict the source IP address. In the example above, rules 38 to 44 prevent
from using the IP of an internal component from the diagnostic port (port
3).

Packets that do not match any rule are not relayed by the switch (with
the exception of port 0).

We can see in the example above that only TCP ports 22, 8080, and
8081 are allowed from the diagnostic port.

4.3 Switch reconfiguration for testing purposes

Due to the precise filtering provided by the switch, it is not possible
to use the diagnostic Ethernet port for component testing. For example,
communication with the Security Gateway is not possible from this port.

However, with hardware access, one can reconfigure the switch by
communicating on the MDIO bus instead of the Security Gateway and
disable all filtering. For the Pwn20wn contest, we adopted this method
to be able to communicate with ECUs listening on this Ethernet bus.

The Security Gateway keeps the clock signal (SDC) always active so,
to take control of the bus, it is necessary to "disconnect" the Security
Gateway from the bus. A wire-cutting approach on the PCB was chosen
for this purpose. The signals are connected to the Security Gateway during
normal operation and are disconnected during switch reconfiguration.

© 00U WN

== e
w N = O

D. Berard, V. Dehors 17

Fig. 10. Cutting the SDC signal line on the PCB

The reconfiguration is performed with a Raspberry-Pi connected to
the MDIO bus, and a small Python script allowing the writing of MDIO
registers to unlock the switch. The operation is as follows for each switch
port:

— Disabling the port (filter configuration is only possible on a disabled

port)

— Disabling filtering by modifying the PORT_ PRI _OVERRIDE

register

— Reactivating the port

— Placing all ports in the same VLAN

mdio_bus = MDIO(clk_pin=23, data_pin=24, path='/dev/gpiochipO"')
mdio_bus.open ()
try:
val=0xffff
while val != Ox1E4F:
val = mdio_bus.read_c22_register (0x14, 0)
print (hex(val))
for i in range (7):
change_tcam_mode (mdio_bus, i)
change_vlan(mdio_bus, i)
val = mdio_bus.read_c22_register (0x1b, Oxlc)
print (hex(val))
except KeyboardInterrupt:

18 Security of connected vehicle

14 | high_zQ

With this reconfiguration, we were able to communicate with all
components connected to the Ethernet switch from the diagnostic port.

5 Security Gateway

5.1 System

The NXP MCP5748G chip serves as the Security Gateway. This system
is interconnected on one side to Ethernet and on the other side to various
CAN buses.

It has two main functions:

— In normal operation, it acts as a proxy between the Ethernet and

CAN worlds and performs filtering of messages it relays.

— It deploys updates to other ECUs connected to the CAN.

Ethernet switch

Other ECUs

Infotainment Gateway

Fig.11. Gateway architecture

The architecture is based on PowerPC-VLE and the operating system is
built on FreeRTOS. Multiple software tasks provide various functionalities.

In addition to providing CAN access to the Ethernet world, this
component guarantees certain vehicle information:

— The VIN (Vehicle Identification Number)

— The serial number

— The date of commissioning

— The country of marketing

— The car color

D. Berard, V. Dehors 19

— The current security version (for anti-rollback)

— Other parameters describing the components

These data are stored in the component’s internal flash memory in
two memory areas, the integrity of which is verified at each startup.

An API on UDP allows reading or writing this information from the
Ethernet. Writing sensitive information (such as the VIN) is subject to
packet signature verification. To modify them, write requests must be
signed (ECDSA). This mechanism is likely used in the factory to program
these values.

5.2 Firmware

Security Gateway firmware deployment is ensured by the Infotainment,
so firmware update files are available in the rootfs.

The format of the update files is simple and not encrypted so the
firmware code can be extracted easily.

The PowerPC-VLE architecture is well supported by analysis tools
like IDA and Ghidra, making their analysis relatively simple. The use of
FreeRTOS APIs by the firmware also helps to navigate the binary for
reverse engineering.

5.3 ECU update mechanism

The Security Gateway ensures the updating process of most vehicle
ECUs. The update files are stored on the Infotainment system, and during
the update process, the Gateway performs the following actions:

— Fetch firmware update through TFTP on the Infotainment

— Use UDS over CAN to check the prerequisites (i.e. version)

— Update the ECU with UDS messages

5.4 Secure boot

The MCP5748G does not have a secure boot mechanism. To limit
the security impact of a lack of secure boot, Tesla has implemented the
mechanism in the bootloader so the firmware (in internal flash or from
another source) is verified at each startup.

The verification is based on an ECDSA signature for production
vehicles and a simple CRC for factory mode vehicles (before provisioning).

The bootloader allows loading firmware from various media:

— SD Card

— TFTP

20 Security of connected vehicle

— Internal Flash

In the case of TFTP and the SD card, the firmware is copied to RAM,
verified, and then started.

The bootloader also implements an anti-rollback mechanism. The
firmware version is checked at startup and during updates. The current
version is saved in a dedicated area of the internal flash memory (see
System). Lower versions are not allowed to start. When an update with a
higher version starts for the first time, the current value is updated.

5.5 CAN filtering

The gateway provides an UDP API on its Ethernet interface to allow
other isolated components, like the Infotainment, to send CAN messages.
CAN filtering by the Security Gateway is provided by whitelists; only
certain CAN IDs are allowed to pass through the Gateway.

The infotainment system shares its state througt CAN messages over
Ethernet. Some of these packets are interpreted by the Security Gateway
and not relayed on the physical CAN bus, this is used to enable/disable
certain gateway features.

6 Tesla strategy regarding external security researchers

6.1 Product security team

For a product manufacturer, dealing with the security of connected
devices can be quite difficult. Indeed, it involves the security of both the
company IT but also the security of the sold product.

The team at Tesla is also tasked to enhance and maintain vehicle
security. They also play a crucial role in reducing the attack surface and
adding new mitigations. For instance, the Tesla Blue Team recently patched
Connman to disable attack surfaces that could not be disabled through
compilation options alone. They also improved Connman’s security by
isolating the code that requires raw sockets.

Tesla have been part of the target for multiple Pwn20wn edition,
they are also part of the sponsors of the event. At least 3 successful and
one unsuccessful attacks on the Tesla have been demontrated during the
competition (2019, 2022, 2023). Theses attacks give Tesla the opportunity
to fix vulnerabilities but also to see real attack and exploit methods.
Looking at attacker paths is very useful to improve the whole system to be
more resistant to such exploitation techniques (hardening, design choices,
sandboxing).

D. Berard, V. Dehors 21

Alongside its Pwn20wn presence, Tesla runs a bug bounty program
on the platform BugCrowd for both its infrastructure and vehicles.

6.2 Product security program

Security researchers can register their vehicles with Tesla’s product
security team. If a security researcher encounters software issues during
testing on a registered vehicle, Tesla provides assistance to reflash the
software in a service center.

If a security researcher demonstrates root access on the infotainment
system, Tesla provides them with an SSH key that grants them full
administrator access to their vehicle for a period of one year. This allows
the security researcher to continue their research and further analyze
the vehicle’s security. It is an incentive that Tesla provides to security
researchers to encourage collaboration and improve the security of their
products.

7 Conclusion

Tesla is actively working on the security of its vehicle components from
the hardware design phase to the production phase with OTA updates
containing security enhancements and fixes. Numerous barriers have been
put in place to reduce the risk of external attacks, limit the impact of
compromises and make harder to pivot between different systems.

This makes it an interesting system to study for a security researcher
as attacking it represents a fascinating technical challenge. It is hoped
that other automotive manufacturers and ECUs suppliers will conduct
similar work in the coming years to make this level of security the norm.

Zero Day Initiative, the company organizing the Pwn20wn compe-
tition, has announced an new edition of the competition dedicated to
the automotive industry for 2024. This kind of initiative will allow par-
ticipating manufacturers to measure their level of security against real
attacks.

References

1. David Bérard and Vincent Dehors. Slides of the talk at Hexacon about
Connman exploit. https://www.synacktiv.com/sites/default/files/2022-10/
tesla_hexacon.pdf, 2022.

2. Inc. Ralf-Philipp Weinmann of Kunnamon and Benedikt Schmotzle of Comse-

curis GmbH. T-Bone technical report. https://kunnamon.io/tbone/tbone-v1.0-
redacted.pdf, 2019.

https://www.synacktiv.com/sites/default/files/2022-10/tesla_hexacon.pdf
https://www.synacktiv.com/sites/default/files/2022-10/tesla_hexacon.pdf
https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf
https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf

22

Security of connected vehicle

Ken Tindell and Ian Tabor. CAN Injection: keyless car theft. https://kentindell.
github.io/2023/04/03/can-injection/, 2023.

Chris Valasek and Charlie Miller. Adventures in Automotive Networks and Con-
trol Units. https://ioactive.com/pdfs/I0Active_Adventures_in_Automotive_
Networks_and_Control_Units.pdf, 2014.

https://kentindell.github.io/2023/04/03/can-injection/
https://kentindell.github.io/2023/04/03/can-injection/
https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf

	Security of connected vehicle

