Security of connected cars with Tesla as example

...........

.........

*******

.........

David BERARD

← ___ →

SECURITY EXPERT @_p0ly_

Who are we

Vincent DEHORS

SECURITY EXPERT @vdehors

Hackers Remotely Kill a Jeep on a Highway Charlie Miller and Chris Valasek 2015

Embed more electronic

- More features
- More connected
- Electronic is used for driving features (emergency break, driving assistance, self driving)

bout this talk Why car security matters?

6 Over-the-Air: How we Remotely Compromised the Gateway, BCM, and Autopilot ECUs of Tesla Cars Keenlab, Tencent

In this talk :

- Security model and architecture - Hardening - Focused on the Tesla's infotainment ECU

User

Wants to steal something valuable inside the car

Thief

Wants to steal the car itself

Wants to tune his own car, modifying software and hardware

Wants to cause an accident Wants to bypass some paying feature

Attacker profiles Multiple threat models

Targeted attack

Wants to locate the vehicle or record the audio/video inside the vehicle

Cyber criminals

Wants to steal user data like account credentials

Car ransomware?

Connectivity

Antennas and connectivity chips for mobile networks, Bluetooth, Wifi, ...

Multimedia

Infotainment is the multimedia computer of the car, has a touch screen and multiple connectivities

ar components More and more connected car

Sensors and Actuators

May be smart or not

Car control

Electronic control units (ECUs) manage all the mechanic parts of the car

Local connection

Component communicating on the same PCB using an embedded protocols like SPI, I2C, UART, PCI

CAN buses Historic car network technology There are often multiple separate CAN networks

Ethernet network

Sometimes components are connected using Ethernet buses either on the same PCB or between two boards. The classic TCP/IP stack can be used.

Car networks How these computers are internally connected

ECUs are interconnected

There are a lot of ECUs in a car

They can send and receive data to each others if they are on the same bus

An attacker can progress in theses networks by compromising multiple ECUs

Common techniques with IT pentesting

Modern architecture

Multimedia and vehicule domains separared by a gateway

In the wild scenario Thieves with physical access

"Edge" ECU Headlight

Even temporary access to the CAN bus

can allow to an attacker to compromise

and persist on an ECU

Details on Ken Tidell blogpost : https://kentindell.github.io/2023/04/03/can-injection/

Attacker

Car connectivity Tuner WiFi chipset Bluetooth chipset Modem

Manufacturer servers Firmware servers Fleet management

Full chain Worst case scenario : remote to CAN

Multimedia part Infotainment

CAN-connected ECUs

Gateway Autopilot

CAN bus control Actuators

nfotainment

Genericity as a design strength

Share hardware and software between models Model 3 / S / Y / X now share the same infotainment

hardware (ICE ECU)

Limit major changes between hardware revisions

Intel and **AMD** devices share a very similar software stack and hardware design

Software long term service

The software stack is actively maintained on all hardware revisions

Same enclosure for infotainment & autopilot

ICE Architecture

Interfaces

Ethernet switch

SoC: Intel Atom

SPI FLASH

SYNACKTIV

eMMC

Gateway MCU

Infotainment

X64 (Intel Atom / AMD Ryzen)

OS: Linux 4.14 / 5.4

Highly customized buildroot system

Boots on eMMC / SPI

CEArchitecture

Software

Gateway

PowerPC e200 in VLE mode

OS: based on FreeRTOS

Boots on internal flash / SDcard / tftp

......

........

Ethernet switch

ICE Architecture Ethernet Network

SYNACKTIV

-

Principles

- Limit the attack surface 1
- Isolate and limit application rights 2
- Make vulnerabilities harder to exploit 3
- Patch vehicles OTA 4
- Isolate and filter Ethernet and CAN networks 5

Protect user data and system integrity 6

Infotainment Software System & Hardening

Limit the attack surface

Well configured

Only required features & drivers

Use state of the art opensource softwares

Activate only required features

Software stack

Modify software

Modify source code to disable unnecessary features

Principles

2

3

- Limit the attack surface 1
 - Isolate and limit application rights
 - Make vulnerabilities harder to exploit
- Patch vehicles OTA 4
- Isolate and filter Ethernet and CAN networks 5
- Protect user data and system integrity 6

Isolate and limit application rights Process isolation

USER	PID	%CPU	%MEM	VSZ	RSS	TTY
dbus	2660	0.6	0.0	3896	3008	?
mediase+	2696	0.0	0.0	3260	2440	?
hermes-+	2763	0.0	0.1	1304752	7876	?
hermes-+	2778	0.0	0.5	1312476	20308	3 ?
updater	2780	0.1	0.5	36396	23080	?
nobody	2796	0.0	0.0	2452	236	?
log	2868	0.0	0.0	2932	1892	?
chromium	3325	0.0	0.0	3260	2424	?
infohea+	3918	0.0	0.1	1077980	5808	?
nobody	4449	0.2	0.0	2452	244	?
gpsmana+	4512	0.0	0.0	3624	1956	?
helios	4529	0.0	0.1	14104	7636	?
gpsmana+	4567	0.0	0.0	4140	1600	?
autopil+	4603	0.0	0.1	1078024	5356	?
gpsmana+	5004	0.0	0.0	3312	508	?
webrtc	5274	0.0	0.2	27764	9116	?
command+	5280	0.0	0.3	96092	12376	?
hermes-+	5308	0.0	0.5	1316508	22480) ?
service+	5365	0.0	0.1	416256	5740	?
connman	5405	0.0	0.1	5696	4108	?
ssh-man+	5471	0.0	0.0	3444	2292	?
mounterd	5482	0.0	0.2	250388	8428	?
sys-mon+	5546	0.0	0.1	13880	7916	?
shell_h+	5562	0.0	0.0	3444	2204	?
shell_h+	5573	0.0	0.0	3444	512	?
shell_h+	5579	0.0	0.0	3312	508	?
inducti+	5580	0.0	0.1	87708	7716	?
dnsmasq	5716	0.0	0.0	3036	1972	?

Each service runs with its own Linux UID UID can be used for filtering network as well

ssh	ı		
STAT	START	TIME	COMMAND
S	01:43	0:01	/usr/bin/dbus-daemonnoforksys
S	01:43	0:00	/usr/bin/dbus-daemonnoforkpri
Sl	01:43	0:00	/opt/hermes/hermes_grablogslog-l
Sl S S<	01:43 01:43 01:43 01:43	0:00 0:00 0:00 0:00	/opt/hermes/hermes_proxylog-leve /bin/ice-updater socklog ucspi ulogduid log
S	01:43	0:00	<pre>/usr/bin/dbus-daemonnoforkpri /usr/bin/infohealthd socklog unix /dev/log /bin/bach /usr/bin/custom crop.ch</pre>
Sl	01:44	0:00	
S	01:43	0:00	
S S S Sl	01:43 01:43 01:43 01:43	0:00 0:00 0:00	/usr/bin/heliosdaemon /bin/bash /usr/bin/custom-cron.sh - /usr/bin/autopilot-api -country=US`
S	01:43	0:00	<pre>sleep 2h /usr/bin/webrtc-comms /usr/bin/command-router /opt/hermes/hermes_clientlog-lev</pre>
S	01:43	0:00	
Ssl	01:43	0:00	
Sl	01:43	0:00	
Sl	01:43	0:00	<pre>/opt/odin/service-ui /usr/sbin/connmand -c /etc/connman/ /bin/sh /usr/bin/ssh-manager /usr/bin/mounterd 0 0 1</pre>
Ss	01:43	0:00	
Ss	01:43	0:00	
S S S S S	01:43 01:43 01:43 01:43 01:43	0:00 0:00 0:00 0:00 0:00	/usr/bin/sys-monitor /bin/sh /usr/bin/shell-history-moni tail -n0 -q -F /var/log/.ash_histor cat /tmp/user history.pipe
Sl	01:43	0:00	/usr/bin/inductivechargerd
S	01:43	0:00	/usr/sbin/dnsmasqconf-file=/etc/

Isolate and limit application rights Sandboxes

process

Kafel

• Filter syscalls and basic parameters

AppArmor

Filter access to files and socket types

IPTables

Filter network outputs

Minijail

 Isolate process into empty network namespace Chroot process

Isolate and limit application rights Sandboxes escape example – pwn2own 2022

ConnMan

Arbitrary network packets → Legitimate CAN packets

SYN

-Kafel

- socket & sendto allowed
- AppArmor
 - network packet dgram allowed
 - capability net_raw allowed

IPTables

 Output packets on raw socket are not filtered

Kafel & AppArmor let Connman create raw socket Raw sockets bypass IPTables

Principles

- Limit the attack surface 1
- Isolate and limit application rights 2
- 3
- Make vulnerabilities harder to exploit
- 4
 - Patch vehicles OTA
 - Isolate and filter Ethernet and CAN networks 5

Protect user data and system integrity 6

Kernel

Kept up-to-date

Some hardening enabled

KASLR

ASLR for userland applications

No CFI

Often built with PIE

Stack cookies enabled

Memory safe languages seem to be used for recently added services

No dynamic allocation for some critical services

Make vulnerabilities harder to exploit

Binaries

......

> ********************* **************

......................

Libraries

Kept up-to-date, backport fixes

Libc has hardening enabled for heap management

Principles

4

- Limit the attack surface 1
- Isolate and limit application rights 2
- Make vulnerabilities harder to exploit 3
 - Patch vehicles OTA
- Isolate and filter Ethernet and CAN networks 5

Protect user data and system integrity 6

Infotainment Software System & Hardening

Tesla uses an encrypted channel (Hermes) to communicate between its server and infotainment Regular updates use this channel

From a security point of view, updates are used to:Fix vulnerabilities

Fix v Add

Impr Upd

Updates add features, this encourages users to apply them

- Add counter measures
- Improve sanbox configuration
- Update base software

Principles

5

- Limit the attack surface 1
- Isolate and limit application rights 2
- Make vulnerabilities harder to exploit 3
- Patch vehicles OTA 4
 - Isolate and filter Ethernet and CAN networks

Protect user data and system integrity 6

Isolate and filter Ethernet and CAN networks³⁹ Access to CAN buses

Isolate and filter Ethernet and CAN networks*

SYSTEM

Same PCB as Infotainment

SoC NXP MCP5748G

FreeRTOS PPC-VLE

CAN buses (Chassis/Party/Vehicle)

Security Gateway

Q_Q **NETWORKS**

Ethernet

Features

Filter CAN messages

Save log files

Update mode Update other ECUs and itself

Provide sensitive information to other ECU (VIN/Serial/...)

Isolate and filter Ethernet and CAN networks⁴ Ethernet Switch

Marvell 88ea6321

- 7 ports Switch
 - Manageable
 - No public datasheet
 - Product brief only mention features

• 256 entries TCAM

Gateway in charge of switch configuration over MDIO Ethernet remote management is disabled

Isolate and filter Ethernet and CAN networks⁴² Ethernet Switch TCAM

Ethernet switch MARVELL 88EA6321

Isolate and filter Ethernet and CAN networks⁴³

Ethernet Switch TCAM

	_7ch						
Novthong parce by mdi	o cov learen 'Pead Writ	e'color-popelo					
ress head -n50	<u>o.csv</u> jegrep Keaujwritt						
<pre>Write(phy=0x1a(0x1a), Write(phy=POPT4(0x14))</pre>	reg=0x00, value=0x9BF7)	(0×10) (0×10)	> рут	thon3	parse_	<u>_τ</u>	cam.
Read(phy=PORT5(0 x15),	$reg=PORT_STS(0x0)) = 0x$	0000	tcam	entry	/ 0	:	sro
<pre>Write(phy=0xf(0xf), re</pre>	g=0x1a, value=0xFFFF)	0.0000	tcam	entry	/ 1	:	sro
Read (phy=GLOBAL3(0x1d) Read (phy=0xf(0xf), rea	<pre>, reg=P2_DEBUG28(0x1c)) =0x1d) = 0x0000</pre>	= 0×0000	tcam	entry	/ 2	:	sro
<pre>Write(phy=0x1f(0x1f),</pre>	<pre>reg=0x1f, value=0xFFFF)</pre>		tcam	entry	/ 3	:	sro
<pre>Write(phy=0x1f(0x1f), Write(phy=0x0(0x0))</pre>	<pre>reg=0x1e, value=0xFFFF) a=0x1f</pre>		tcam	entry	<i>י</i> 4	:	sro
Read(phy=0xf(0xf), reg	=0x1f) = 0x0000		tcam	entry	/ 5	:	sro
Read(phy=0x9(0x9), reg	$=0\times01) = 0\times0000$		tcam	entry	/ 6	:	sro
Read($phy=0x0(0x0)$, reg Read($phy=0x8(0x8)$, reg	$=0\times00) = 0\times0000$ $=0\times00) = 0\times8000$		tcam	entry	<i>י</i> 7	:	sro
<pre>Write(phy=0x1f(0x1f),</pre>	<pre>reg=0x1f, value=0xFFFF)</pre>		tcam	entry	/ 8	:	sro
<pre>Write(phy=GL0BAL1(0x1b Write(phy=0x1f(0x1f).</pre>), reg=MV88E6XXX_G1_STA reg=0x1f. value=0xFFFF)	TS_COUNTER_01(0x1	tcam	entry	/ 9	:	sro
<pre>Write(phy=0x1e(0x1e),</pre>	reg=0x1f, value=0xFFFF)		tcam	entry	/ 10	:	sro
<pre>Write(phy=0x0(0x0), re Write(phy=0xa(0xa), re</pre>	g=0x00, value=0x2FFF)		tcam	entry	/ 11	:	sro
Write(phy=0xc(0xc), re	g=0x00, value=0xF7FF)		tcam	entry	/ 12	:	sro
<pre>Read(phy=0xf(0xf), reg Pood(phy=0x17(0x17), reg</pre>	=0x1f) = 0xFFFF		tcam	entry	/ 13	:	sro
<pre>Write(phy=0x17(0x17), r Write(phy=0x1f(0x1f),</pre>	eg=0x01) = 0xFFFF reg=0x1f, value=0xFFFF)		tcam	entry	/ 14	:	sro
			tcam	entry	/ 15	:	sra
			tcam	entry	/ <u>16</u>		sra
			tcam	entry	/ 17		sra
			tcam	entry	/ 18		sra
			tcam	entry	/ 10 / 10	:	cro
			tcam	entry	, <u>1</u> 0		cro
			tcam	ontry	/20		cro
			tcom	ontr	, 21		SIC
			Cam	entry			SIC

-zsh py boot_normal.csv _port=3, dst_port=0, eth_type=0x0800,IPv4,TCP,tcp_dport=22, _port=4, dst_port=0, eth_type=0x0800,IPv4,TCP,tcp_dport=22, _port=3, dst_port=0, eth_type=0x0800,IPv4,TCP,tcp_dport=8080, _port=4, dst_port=0, eth_type=0x0800,IPv4,TCP,tcp_dport=8080, _port=3, dst_port=0, eth_type=0x0800,IPv4,TCP,tcp_dport=8081, _port=4, dst_port=0, eth_type=0x0800,IPv4,TCP,tcp_dport=8081, _port=0, dst_port=3,4, eth_type=0x0800,IPv4,TCP,tcp_sport=0, _port=0, dst_port=3,4, eth_type=0x0800,IPv4,TCP,tcp_sport=7967, _port=0, dst_port=3,4, eth_type=0x0800,IPv4,TCP,tcp_sport=7967, _port=0, dst_port=1,2,3,4,5,6, eth_type=0x0806, _port=3, dst_port=0, eth_type=0x0806, _port=4, dst_port=0, eth_type=0x0806, _port=1, dst_port=0, eth_type=0x0800,IPv4,ip_src=192.168.90.60/32 _port=1, dst_port=0, VLAN_TAG=81:00:00:14, eth_type=0x0800, _port=1, dst_port=0, eth_type=0x0806, _port=6, dst_port=0, eth_type=0x0800,IPv4,ip_src=192.168.90.30/32 _port=6, dst_port=0, eth_type=0x88f7, _port=6, dst_port=0, VLAN_TAG=81:00:60:03, eth_type=0x22f0, _port=6, dst_port=0, eth_type=0x0806, _port=2, dst_port=0, eth_type=0x0800,IPv4,ip_src=192.168.90.103/32 _port=2, dst_port=0, eth_type=0x0806, 22 : src_port=0, dst_port=DROP ip_src=192.168.90.60/32

Principles

6

- Limit the attack surface 1
- Isolate and limit application rights 2
- Make vulnerabilities harder to exploit 3
- Patch vehicles OTA 4
- Isolate and filter Ethernet and CAN networks 5

Protect user data and system integrity

Protect sensitive data Partition scheme and encryption using LVM / LUKS

Which data?

- Application data and credentials
- User data (login, passwords, cookies, history, ...)
- System files (writable configuration files, logs)

Confidentiality

- Some user or application data can be considered sensitive and are encrypted
- An attacker should not be able to access data from a simple flash memory dump

Encryption key

- Encryption keys are derivated from an hardware-backed secret
- Could be extracted if the attacker gains unconfined root code execution

In the wild products

It is hard to manage the product end of life • ECUs bought on eBay still have personal data • These ECUs probably come from damaged cars Some data are directly visible in the UI

Protect sensitive data

.............

............

...............

..............

V

72

User data embedded in the devices

Bootloader

.

Protect system integrity Secure boot to authenticate executed code

Product security blue team

Dedicated to manufactured products (cars)

Works with the IT security team (infra)

Handles all phases of product life

Design

Integrate the security from the early product design

Software and hardware architecture

Development

Code reviews Recommendations

Validation

Security assessments

Production

Security updates Product updates reviews Detection Incident response Bug bounty / Pwn2Own

External assessments

Ask cybersecurity companies to assess the product Everything found can be useful (not only the impactful vulnerabilities)

Security researcher program

- Researchers can register their car as test product
- Tesla helps researchers fix their car in case of broken ECU
- Gives a one-year root SSH key to researchers reporting vulnerabilities that allow to get root on Infotainment

Intensive testing

Pwn2Own

International contest

Real world scenario and impactful demonstration only Hardware (ECUs) is given to contestants

Bug bounty

Ask security researchers from all around the world to find and

report security issues

Conclusion

life cycle

security, with a few years late.

- Security has to be taken into account since the beginning. Cars have a long
- Lot of changes since 2016 on Tesla cars, they managed to update the software on production vehicle to improve their defences
- Even with a good architecture and hardening, they are still full chain attacks that allows CAN access remotely (pwn2own 2023)
- Tesla infotainment is increasingly similar to the smartphones in terms of
- Our researches only target Tesla, it is hoped that other automotive manufacturers and ECUs suppliers will conduct similar work

Questions?

.......

100000

