
1

Pwn by abandonware
leHack 2023

Antoine Cervoise – Romain Huon

2023/07/01

2

2

Who are we?
 Antoine Cervoise -

@acervoise
 Penetration tester

 Romain Huon – Renik
@r3n1k

 Chief Information Officer

 @synacktiv
 Offensive security
 130 ninjas : pentest, reverse engineering, development, incident

response
 6 sysadmins VS 124 red teamers :]

 Based in Paris, Rennes, Lyon, Toulouse and we are hiring!

3

3

Plan
 How it starts
 Backdoor DosBox
 Backdoor Wine
 How to protect?

 AppArmor
 New user

 Conclusion

4

How it starts

5

5

I never finished this game!
 An old video game found in the basement

 Fallout 1 - 1997

6

6

How to play?
 Install a Windows 95/98 VM
 Maybe wine?
 Lets check on Google

 You can buy it on Steam!
 DosBox

7

7

Installation

8

8

Installation

9

9

DosBox Mount

10

10

DosBox Mount

11

11

Configuration file

$ tail -n 5 .dosbox/dosbox-0.74-3.conf
[autoexec]
Lines in this section will be run at startup.
You can put your MOUNT lines here.

keyb fr

12

12

.bashrc / .profile
 .bashrc

 Executed when bash is started
 .profile

 Executed when a session is opened
 Graphical, SSH...

13

13

Scenario
 Imagine a backoored old game that

 Mount your filesystem
 Add a malicious command into the .profile/.bashrc file

 Is this possible?

14

14

What about Wine?

15

15

Scenario
 Imagine an backoored old game that

 Check if you are running Wine or DosBox
 Mount your filesystem
 Add a malicious command into the .profile/.bashrc file

 Is this possible?

16

16

Scenario
 Others ideas

 Try to connect to the Internet
 DosBox does not have default network settings

 https://www.dosbox.com/wiki/Network_Setup

https://www.dosbox.com/wiki/Network_Setup

17

17

Your game cannot be backdoored !
 DosBox did not exist when Fallout went out
 But

 Not everyone has the original CD

18

Backdoor DosBox

19

19

Write into a file with CMD – Test 1
 Into DosBox

 Bash
$ ls |grep -i test
TEST
$ cat TEST
1
2
$ hexdump TEST
0000000 0d31 320a 0a0d
0000006

D:\> echo 1 > test
D:\> echo 2 >> test

20

20

Write into a file with CMD – Test 1
 Reminder: using Bash

$ echo 1 > linux-shell
$ echo 2 >> linux-shell
$ hexdump linux-shell
0000000 0a31 0a32
0000004

21

21

Write into a file with CMD – Test 2
 DosBox

 Bash

D:\> md .T
D:\> echo "id" > .T/DOOR.SH

$ bash .T/DOOR.SH
.T/DOOR.SH: ligne 1: $'id\r' : commande introuvable
$ file .T/DOOR.SH
test.sh: ASCII text, with CRLF line terminators
$ echo id > test.sh
$ file test.sh
test.sh: ASCII text

22

22

Write into a file with CMD – Test 2
 Tips

 \r is now a comment

D:\> md .T
D:\> echo "id #" > .T/DOOR.SH

23

23

Write into a file with CMD – Test 3
 Into DosBox

 Bash

$ ls |grep -i 123
12345678

D:\> echo 1 > 123456789123456789

24

24

Write into a file with CMD – Test 4
 Bash

 DosBox

 Bash

$ echo bash > aaa

D:\> echo dosbox >> aaa

$ ls |grep -i aaa
aaa
AAA

25

25

Write into a file with CMD - Conclusion
 Filename

 must be in uppercase
 limited to 8 chars

 File using CRLF
 cannot write valid bash scripts

26

26

Write into a file using C code – Step 1
 How to compile?

 Google: https://nullprogram.com/blog/2014/12/09/
 Seems painful
 Does not seems to still working

 Lets do it old style: Turbo C Compiler

https://nullprogram.com/blog/2014/12/09/

27

27

Write into a file using C code – Step 2

28

Backdoor Wine

29

29

Testing DosBox code

$ wine EXEC.EXE
winevdm: Z:\home\auditor\TC\EXEC.EXE is a DOS application, you need to
install DOSBox.

30

30

Write into a file with CMD – Test 1
 With a carriage return

 Wine

 Bash

Z:\home\ace>echo ls >> .bashrc

$ bash
ls: cannot access ''$'\r': No such file or directory

31

31

Write into a file with CMD – Test 2
 Without a carriage return

 Wine

 Bash

Z:\home\ace>echo|set /p=ls -al >> .bashrc

$ bash
total 56286712
[...]

32

Putting everything together

33

33

Detect DosBox
 VER command

D:\> ver
DOSBox version 074-3. Reported DOS version 5.00.

34

34

Detect Wine

https://www.winehq.org/pipermail/wine-devel/2008-September/069387.html

https://www.winehq.org/pipermail/wine-devel/2008-September/069387.html

35

35

Put the backdoor
 Create an install.bat file

 Calling the backdoor
 Then the real installer

 Backdoor the real install.bat
 Backdoor the real install.exe

 Using a code cave

36

36

Final scenario
 Backdoor

 Check if is using Wine
 Call .bat backdoor

 If not check if using DosBox
 Check if Linux is used
 Call the .exe backdoor

Z:\> mount D ~
Z:\> D:
D:\> dir D:\ > a
D:\> if exist a echo Linux

37

How can I protect myself against this attack?

38

38

How can I protect my laptop ?
 Generic approach

 How can I prevent any program...
 ... that I run willingly on my laptop...

 … to do things I don’t want it to ?
 Generic answers

 Do you trust its editor / the repository you download it from ?
 ⚠️ Could have been repackaged
 ⚠️ Most public repos wont evaluate security at all

 Can you read its code & assess its security ?
 ⚠️Attack can be in compiled binary, even when « open source » :]

 Do you have the skills (and time) to reverse it ?
 ⚠️Malicious code can be obfuscated

39

39

How can I protect my laptop ?
 Let’s try a more specific approach

 What are the things I’m sure I do NOT want this program to be
able to do?

 Modify any file on my system (defend against ransomware)
 Well, except maybe the ones he needs to (save files...)

 Read my private files in my home folder
 SSH keys, GPG keys… pictures? ID papers scans?… (defend against

scam / identity theft)
 Well, anything outside it’s game files really?
 Especially if it needs Internet access

 Access Internet (defend against zombification/botnets)
 ⇒ We seem to need a blocklist/allowlist of actions the program

can do on our files (and maybe on the network) … a sandbox

40

40

Sandboxing on Linux
 Classic POSIX (D)ACLs on files won’t help us here

 Designed for multi-user systems, for isolation between users
 Here, everything runs under our own user id

 The program has access to the same files as us
 Needs to interact with our graphical session (X server, Wayland…)

 Can’t make it run under another user id
 Classic firewalling won’t either

 We can prevent a program from opening a listening socket (INPUT
DROP)

 Most of malware now do reverse shell / exfiltration over https/dns
 Can’t simply prevent OUTGOING from our own userid :’)

41

41

Sandboxing on Linux
 VMs are a good generic solution

 Especially for old games : you don’t need performance
 But if you wanted to run VMs anyway, why download a x86

emulator :]
 Full-blown containers (docker…) are probably not

 Difficult to interact with graphical session
 Will need a lot of bind-mounts shenanigans

 Projects exists that use “container tech” (namespaces,
seccomp filters, cgroups...) to sandbox user programs
 Firejail, bubblewrap, flatpak…
 YMMV

42

42

Linux Security Modules
 LSM

 The Linux kernel has preconfigured hooks for its various functions
that do access checks to kernel objects : files, inodes, devices...

 So that different optional frameworks can implement their own
logic and add another level of security, finer-grained ACLs…

 2 best-knowns “major” LSM that do Mandatory Access Control
(MAC)

 SELinux
 AppArmor

 Minor LSMs: Yama (ptrace hardening), Lockdown (modprobe and
memory access hardening)

43

43

Linux Security Modules : SELinux
 SELinux (Security-Enhanced Linux)

 Suggestion of the NSA in 2001
 Linus did not want to integrate NSA code in the kernel :)

 So the LSM system was designed so that alternatives could arise
 Philosophy

 Very comprehensive, very precise allowlist approach
 Labels every file & process of the system according to predefined-

rules
 ps -Z & ls -Z to see the security contexts on processes & files
 chcon, restorecon to change these labels on the fly
 Needs a compatible filesystem to store labels (extended attributes)

44

44

LSM : SELinux
 SELinux label example

ls -lZ httpd.conf

-rw-r--r--. root root system_u:object_r:httpd_config_t:s0 httpd.conf

ps -eZ | grep sshd

system_u:system_r:sshd_t:s0-s0:c0.c1023 1882 ? 00:00:00 sshd

 “Security context” label : user:role:type:range
 So, by default, on a SELinux system

 Sshd process in domain sshd_t wont be able to read the file
httpd.conf of type httpd_config_t

 even if it is run by root
 But what if I want remote admins to manage Apache config

through ssh… ?

45

45

LSM : SELinux
 SELinux does many things “under the hood” by default

 Can be hard to configure when rules/apps fight for labels
 man ssh_selinux : If you want to allow ssh with chroot env to apache

content, you must turn on the ssh_chroot_manage_apache_content
boolean.

 setsebool -P ssh_chroot_manage_apache_content 1

 Protips & Traps
 Never setenforce 0 :)
 Learn to restorecon when you move/copy files around

46

46

SELinux : Conclusion
 Ecosystem

 Popular / preconfigured on RedHat distros (Fedora, RHEL,
CentOS, Gentoo, CoreOS…)

 Chosen by Google to harden Android (since 5.0)
 Makes these systems secure by default, but hard to tweak
 SELinux is known to be a real PITA

 For our reversers exploiting Android
 For our pentesters :-)
 For sysadmins trying to use it on non-Fedora-based distros...

 What’s the equivalent on our Ubuntu laptop?

47

47

LSM : AppArmor
 AppArmor : “simpler” alternative to SELinux…

 Default LSM on Debian/Ubuntu family distros
 ...That does less things :

 Less hooks implemented / less granularity on operations
 No security label on files (ls -Z : “?”)
 AppArmor profiles apply only on processes (ps -Z), and only when

the executable is at the configured path
 If you rename/copy the executable elsewhere, the profile wont apply

 Same allowlist approach
 But what if there’s no AppArmor profile installed for a program ?

 Then it can do ANYTHING on ANY file he has the POSIX rights to :]
 Since there are no labels / rules on files alone

48

48

AppArmor defaults
 So how many AppArmor profiles are shipped in a default

install?
 (And how many Ubuntu apps/packages include an AppArmor

profile?)
➔ # aa-status

➔ apparmor module is loaded.

➔ 36 profiles are loaded. / 36 profiles are in enforce mode.

➔ 3 processes are in enforce mode.

➔ /usr/sbin/cups-browsed (750)

➔ /usr/sbin/cupsd (712)

 On the 5 “server” services that listen on network by default on a
fresh Ubuntu install, only one (cupsd) has an AppArmor profile

 sshd, avahi, systemd-resolved … do not (“unconfined”)

49

49

AppArmor : not so secure by default
 What about “client”(user) processes on a default Ubuntu

22.04?
 Ubuntu 22.05 ships with some enabled AppArmor profiles for

evince (PDF viewer) & snaps, including firefox
 A+ for effort to snap / evince / cups / firefox package teams...

 Be warned that, out-of-the-box, your AppArmor-enabled
Linux distro wont do much to protect you from our threat
model (malicious/deceptive program ran by you)
 Most of the programs that run on your system are “unconfined” by

default
 ⇒ We need to write an AppArmor profile for DOSBox if we

want to be protected from theses shady abandonwares

50

Let’s write an AppArmor profile for DosBox

51

51

Writing an AppArmor profile
 The official method

 Use aa-genprof and/or aa-logprof from package apparmor-tools to
interactively create a new profile

 Will create a blank profile in complain mode, and parse system logs
to see what it tried to do

 Then ask the user questions about wether or not this should be
authorized

 In practice: not often usable
 Can fail to parse AppArmor rules logic and logs (userland tooling

lagging behind kernel API)
 Complain mode can lead to tricky behaviour when transitioning /

debugging
 Pro tip : avoid complain mode

52

52

Writing an AppArmor profile
 The ninja method

 Create a very simple profile in enforce mode
 Loop

 Try to launch & use the app
 If it crashes / fails, then

 Check the last action AppArmor has blocked in system log
 sudo journalctl -r | grep AVC | grep DENIED | head

 Modify the profile to allow it
 Reload the profile

 sudo apparmor_parser -r /etc/apparmor.d/myprofile

 Repeat until it runs OK!

53

53

Writing an AppArmor profile
 AA Profile = plain-text file in /etc/apparmor.d/

 Quite easy to read
 Can #include (reference) other files
 The tunables subfolder defines variables that can be used in profiles

 @{HOMEDIRS}=/home/
 @{HOME}=@{HOMEDIRS}/*/ /root/

 The abstractions subfolder contains predefined rules for common
use cases
 abstractions/base ← libc, locales, unix sockets
 abstractions/X, abstractions/audio ← useful for DOSbox
 abstractions/private-files-strict (blocklist) ← quick win !

54

54

/etc/apparmor.d/usr.bin.dosbox
r : read file
w : write (& delete) file
a : append-only mode
k : file lock : lock file
l : link : create hardlink to file
m : mmap file
x : execute program (must specify how to transition)

- ix : inherit the same (current) AppArmor profile for the new
program
- px : use the dedicated AppArmor profile that (must) exists
for the program
- ux : unconfined (YOLO mode)

 /usr/bin/dash ix,

With this simple profile, a DosBox
game won’t be able to do much
“classic” shady things on your laptop

55

55

Some tips
 Review whats inside abstractions/xxx before using them

 Sometimes a bit loose
 Trying to support many configs
 Dbus / X server / abstract UNIX sockets can lead to sandbox

escapes
 Try to copy/paste only the relevant lines for your own config

 Avoid transitions to Unconfined (= sandbox escapes)
 /bin/{ba,}sh pUx = gg

 An enforced “a bit laxist” profile >>> a “paranoid” profile in
complain mode

56

56

Some tips (cont)
 “deny” keyword is a bit misleading

 allowlist logic, so if some path does not match any rule, it will be
blocked & logged : no need to explicitely use “deny”.

 “Deny” rules take precedence over normal (allow) rules and silence
logging, unless you specify “audit deny” instead of “deny”.
 “Deny” keyword means “I know the program will try to access that,

but it doesn’t really need to, so block it, but do not spam my logs
with these attempts”

 Example : Enumerating /proc, cgroups...
 “Audit Deny” means “I want to be really sure this program can’t

ever access this path, and if it tries to, I want to be notified”
 In case you’re not sure of the things you’ve written/included…

 Warning : deny rules are enforced even in complain mode !

57

Wine protection: new user

58

58

Filter filesystem access
 Source:

https://doc.ubuntu-fr.org/wine#deplacer_le_repertoire_de_w
ine

 Less effective than AppArmor

https://doc.ubuntu-fr.org/wine#deplacer_le_repertoire_de_wine
https://doc.ubuntu-fr.org/wine#deplacer_le_repertoire_de_wine

59

59

Filter filesystem access
 Intial configuration

 After each install

$ sudo adduser --home /home/wine --disabled-password --disabled-login wine
$ sudo mv -iv .wine/ /home/wine/​.wine
$ sudo chown -R wine:wine /home/wine
​$ sudo adduser $USER wine
​$ sudo chmod -R ug+rw /home/wine

$ ​sudo chown -R wine:wine /home/wine
$ ​​sudo chmod ug+x zorglub.exe

60

60

Other solution
 Restrict wine accessing the filesystem

 However → https://forum.winehq.org/viewtopic.php?t=7449

https://forum.winehq.org/viewtopic.php?t=7449

61

Conclusion

62

62

Conclusion
 Do not run software without asking yourself if it can do

something malicious
 Learn how your software is working
 Harden you system

63

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

