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Who are we?
 Antoine Cervoise - 

@acervoise
 Penetration tester

 Romain Huon – Renik 
@r3n1k

 Chief Information Officer

 @synacktiv
 Offensive security
 130 ninjas : pentest, reverse engineering, development, incident 

response
 6 sysadmins VS 124 red teamers :]

 Based in Paris, Rennes, Lyon, Toulouse and we are hiring!
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Plan
 How it starts
 Backdoor DosBox
 Backdoor Wine
 How to protect?

 AppArmor
 New user

 Conclusion



4

How it starts
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I never finished this game!
 An old video game found in the basement

 Fallout 1 - 1997
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How to play?
 Install a Windows 95/98 VM
 Maybe wine?
 Lets check on Google

 You can buy it on Steam!
 DosBox
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Installation
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Installation
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DosBox Mount
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DosBox Mount
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Configuration file

$ tail -n 5 .dosbox/dosbox-0.74-3.conf 
[autoexec]
# Lines in this section will be run at startup.
# You can put your MOUNT lines here.

keyb fr
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.bashrc / .profile
 .bashrc

 Executed when bash is started
 .profile

 Executed when a session is opened
 Graphical, SSH...
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Scenario
 Imagine a backoored old game that

 Mount your filesystem
 Add a malicious command into the .profile/.bashrc file

 Is this possible?
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What about Wine?
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Scenario
 Imagine an backoored old game that

 Check if you are running Wine or DosBox
 Mount your filesystem
 Add a malicious command into the .profile/.bashrc file

 Is this possible?
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Scenario
 Others ideas

 Try to connect to the Internet
 DosBox does not have default network settings

 https://www.dosbox.com/wiki/Network_Setup 

https://www.dosbox.com/wiki/Network_Setup
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Your game cannot be backdoored !
 DosBox did not exist when Fallout went out
 But

 Not everyone has the original CD
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Backdoor DosBox
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Write into a file with CMD – Test 1
 Into DosBox

 Bash
$ ls |grep -i test
TEST
$ cat TEST 
1
2
$ hexdump TEST 
0000000 0d31 320a 0a0d                         
0000006

D:\> echo 1 > test
D:\> echo 2 >> test
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Write into a file with CMD – Test 1
 Reminder: using Bash

$ echo 1 > linux-shell
$ echo 2 >> linux-shell 
$ hexdump linux-shell 
0000000 0a31 0a32                              
0000004
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Write into a file with CMD – Test 2
 DosBox

 Bash

D:\> md .T
D:\> echo "id" > .T/DOOR.SH

$ bash .T/DOOR.SH 
.T/DOOR.SH: ligne 1: $'id\r' : commande introuvable
$ file .T/DOOR.SH 
test.sh: ASCII text, with CRLF line terminators
$ echo id > test.sh
$ file test.sh 
test.sh: ASCII text
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Write into a file with CMD – Test 2
 Tips

 \r is now a comment

D:\> md .T
D:\> echo "id #" > .T/DOOR.SH
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Write into a file with CMD – Test 3
 Into DosBox

 Bash

$ ls |grep -i 123
12345678

D:\> echo 1 > 123456789123456789
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Write into a file with CMD – Test 4
 Bash

 DosBox

 Bash

$ echo bash > aaa

D:\> echo dosbox >> aaa

$ ls |grep -i aaa
aaa
AAA
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Write into a file with CMD - Conclusion
 Filename 

 must be in uppercase
 limited to 8 chars

 File using CRLF
 cannot write valid bash scripts
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Write into a file using C code – Step 1
 How to compile?

 Google: https://nullprogram.com/blog/2014/12/09/
 Seems painful
 Does not seems to still working

 Lets do it old style: Turbo C Compiler

https://nullprogram.com/blog/2014/12/09/
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Write into a file using C code – Step 2
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Backdoor Wine
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Testing DosBox code

$ wine EXEC.EXE
winevdm: Z:\home\auditor\TC\EXEC.EXE is a DOS application, you need to 
install DOSBox.
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Write into a file with CMD – Test 1
 With a carriage return

 Wine

 Bash

Z:\home\ace>echo ls >> .bashrc

$ bash
ls: cannot access ''$'\r': No such file or directory
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Write into a file with CMD – Test 2
 Without a carriage return

 Wine

 Bash

Z:\home\ace>echo|set /p=ls -al >> .bashrc

$ bash
total 56286712
[...]
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Putting everything together



33

33

Detect DosBox
 VER command

D:\> ver
DOSBox version 074-3. Reported DOS version 5.00.
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Detect Wine

https://www.winehq.org/pipermail/wine-devel/2008-September/069387.html 

https://www.winehq.org/pipermail/wine-devel/2008-September/069387.html
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Put the backdoor
 Create an install.bat file

 Calling the backdoor
 Then the real installer

 Backdoor the real install.bat
 Backdoor the real install.exe

 Using a code cave



36

36

Final scenario
 Backdoor

 Check if is using Wine
 Call .bat backdoor

 If not check if using DosBox
 Check if Linux is used
 Call the .exe backdoor

Z:\> mount D ~
Z:\> D:
D:\> dir D:\ > a
D:\> if exist a echo Linux
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How can I protect myself against this attack?
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How can I protect my laptop ?
 Generic approach

 How can I prevent any program...
 ... that I run willingly on my laptop...

 … to do things I don’t want it to  ?
 Generic answers

 Do you trust its editor / the repository you download it from ?
  ⚠️ Could have been repackaged
  ⚠️ Most public repos wont evaluate security at all

 Can you read its code & assess its security ?
 ⚠️Attack can be in compiled binary, even when « open source » :]

 Do you have the skills (and time) to reverse it ?
 ⚠️Malicious code can be obfuscated
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How can I protect my laptop ?
 Let’s try a more specific approach

 What are the things I’m sure I do NOT want this program to be 
able to do?

 Modify any file on my system (defend against ransomware)
 Well, except maybe the ones he needs to (save files...)

 Read my private files in my home folder
 SSH keys, GPG keys… pictures? ID papers scans?… (defend against 

scam / identity theft)
 Well, anything outside it’s game files really?
 Especially if it needs Internet access

 Access Internet (defend against zombification/botnets)
  ⇒ We seem to need a blocklist/allowlist of actions the program 

can do on our files (and maybe on the network) … a sandbox
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Sandboxing on Linux
 Classic POSIX (D)ACLs on files won’t help us here

 Designed for multi-user systems, for isolation between users
 Here, everything runs under our own user id

 The program has access to the same files as us
 Needs to interact with our graphical session (X server, Wayland…)

 Can’t make it run under another user id
 Classic firewalling won’t either

 We can prevent a program from opening a listening socket (INPUT 
DROP)

 Most of malware now do reverse shell / exfiltration over https/dns
 Can’t simply prevent OUTGOING from our own userid :’)
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Sandboxing on Linux
 VMs are a good generic solution

 Especially for old games : you don’t need performance
 But if you wanted to run VMs anyway, why download a x86 

emulator :]
 Full-blown containers (docker…) are probably not

 Difficult to interact with graphical session
 Will need a lot of bind-mounts shenanigans

 Projects exists that use “container tech” (namespaces, 
seccomp filters, cgroups...)  to sandbox user programs
 Firejail, bubblewrap, flatpak…
 YMMV
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Linux Security Modules
 LSM

 The Linux kernel has preconfigured hooks for its various functions 
that do access checks to kernel objects : files, inodes, devices...

 So that different optional frameworks can implement their own 
logic and add another level of security, finer-grained ACLs…

 2 best-knowns “major” LSM that do Mandatory Access Control 
(MAC)

 SELinux
 AppArmor

 Minor LSMs: Yama (ptrace hardening), Lockdown (modprobe and 
memory access hardening)
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Linux Security Modules  : SELinux
 SELinux (Security-Enhanced Linux)

 Suggestion of the NSA in 2001
 Linus did not want to integrate NSA code in the kernel :)

 So the LSM system was designed so that alternatives could arise
 Philosophy

 Very comprehensive, very precise allowlist approach
 Labels every file & process of the system according to predefined-

rules
 ps -Z & ls -Z to see the security contexts on processes & files
 chcon, restorecon to change these labels on the fly
 Needs a compatible filesystem to store labels (extended attributes)
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LSM : SELinux
 SELinux label example

# ls -lZ httpd.conf

-rw-r--r--. root root system_u:object_r:httpd_config_t:s0 httpd.conf

# ps -eZ | grep sshd

system_u:system_r:sshd_t:s0-s0:c0.c1023  1882 ?  00:00:00 sshd

 “Security context” label : user:role:type:range
 So, by default, on a SELinux system

 Sshd process in domain sshd_t wont be able to read the file 
httpd.conf of type httpd_config_t 

 even if it is run by root
 But what if I want remote admins to manage Apache config 

through ssh… ?
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LSM : SELinux
 SELinux does many things “under the hood” by default

 Can be hard to configure when rules/apps fight for labels
 man ssh_selinux : If you want to allow ssh with chroot env to apache 

content, you must turn on the ssh_chroot_manage_apache_content 
boolean.

 setsebool -P ssh_chroot_manage_apache_content 1

 Protips & Traps
 Never setenforce 0 :)
 Learn to restorecon when you move/copy files around
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SELinux : Conclusion
 Ecosystem

 Popular / preconfigured on RedHat distros (Fedora, RHEL, 
CentOS, Gentoo, CoreOS…)

 Chosen by Google to harden Android (since 5.0)
 Makes these systems secure by default, but hard to tweak
 SELinux is known to be a real PITA 

 For our reversers exploiting Android
 For our pentesters :-)
 For sysadmins trying to use it on non-Fedora-based distros...

 What’s the equivalent on our Ubuntu laptop?
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LSM : AppArmor
 AppArmor : “simpler” alternative to SELinux…

 Default LSM on Debian/Ubuntu family distros
 ...That does less things :

 Less hooks implemented / less granularity on operations
 No security label on files (ls -Z : “?”)
 AppArmor profiles apply only on processes (ps -Z), and only when 

the executable is at the configured path
 If you rename/copy the executable elsewhere, the profile wont apply

 Same allowlist approach 
 But what if there’s no AppArmor profile installed for a program ?

 Then it can do ANYTHING on ANY file he has the POSIX rights to :]
 Since there are no labels / rules on files alone
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AppArmor defaults
 So how many AppArmor profiles are shipped in a default 

install?
 ( And how many Ubuntu apps/packages include an AppArmor 

profile?)
➔ # aa-status

➔ apparmor module is loaded.

➔ 36 profiles are loaded. / 36 profiles are in enforce mode.

➔ 3 processes are in enforce mode.

➔    /usr/sbin/cups-browsed (750) 

➔    /usr/sbin/cupsd (712) 

 On the 5 “server” services that listen on network by default on a 
fresh Ubuntu install, only one (cupsd) has an AppArmor profile

 sshd, avahi, systemd-resolved … do not (“unconfined”)
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AppArmor : not so secure by default
 What about “client”(user) processes on a default Ubuntu 

22.04?
 Ubuntu 22.05 ships with some enabled AppArmor profiles for 

evince (PDF viewer) & snaps, including firefox
 A+ for effort to snap / evince / cups / firefox package teams...

 Be warned that, out-of-the-box, your AppArmor-enabled 
Linux distro wont do much to protect you from our threat 
model (malicious/deceptive program ran by you)
 Most of the programs that run on your system are “unconfined” by 

default
  ⇒ We need to write an AppArmor profile for DOSBox if we 

want to be protected from theses shady abandonwares
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Let’s write an AppArmor profile for DosBox
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Writing an AppArmor profile
 The official method

 Use aa-genprof and/or aa-logprof from package apparmor-tools to 
interactively create a new profile

 Will create a blank profile in complain mode, and parse system logs 
to see what it tried to do

 Then ask the user questions about wether or not this should be 
authorized

 In practice: not often usable
 Can fail to parse AppArmor rules logic and logs (userland tooling 

lagging behind kernel API)
 Complain mode can lead to tricky behaviour when transitioning / 

debugging
 Pro tip : avoid complain mode



52

52

Writing an AppArmor profile
 The ninja method

 Create a very simple profile in enforce mode
 Loop 

 Try to launch & use the app
 If it crashes / fails, then 

 Check the last action AppArmor has blocked in system log
 sudo journalctl -r | grep AVC | grep DENIED | head

 Modify the profile to allow it
 Reload the profile

 sudo apparmor_parser -r /etc/apparmor.d/myprofile

 Repeat until it runs OK!



53

53

Writing an AppArmor profile
 AA Profile = plain-text file in /etc/apparmor.d/

 Quite easy to read
 Can #include (reference) other files
 The tunables subfolder defines variables that can be used in profiles

 @{HOMEDIRS}=/home/
 @{HOME}=@{HOMEDIRS}/*/ /root/

 The abstractions subfolder contains predefined rules for common 
use cases
 abstractions/base ← libc, locales, unix sockets
 abstractions/X, abstractions/audio ← useful for DOSbox
 abstractions/private-files-strict (blocklist) ← quick win !
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/etc/apparmor.d/usr.bin.dosbox
r :   read file
w : write  (& delete) file
a : append-only mode 
k : file lock : lock file
l  : link : create hardlink to file
m : mmap file
x : execute program (must specify how to  transition)

- ix : inherit the same (current) AppArmor profile for the new 
program
- px : use the dedicated AppArmor profile that (must) exists 
for the program
- ux : unconfined (YOLO mode)

 /usr/bin/dash ix,

With this simple profile, a DosBox 
game won’t be able to do much 
“classic” shady things on your laptop
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Some tips
 Review whats inside abstractions/xxx before using them

 Sometimes a bit loose 
 Trying to support many configs
 Dbus / X server / abstract UNIX sockets can lead to sandbox 

escapes
 Try to copy/paste only the relevant lines for your own config

 Avoid transitions to Unconfined (= sandbox escapes)
 /bin/{ba,}sh pUx = gg

 An enforced “a bit laxist” profile >>> a “paranoid” profile in 
complain mode
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Some tips (cont)
 “deny” keyword is a bit misleading

 allowlist logic, so if some path does not match any rule, it will be 
blocked & logged : no need to explicitely use “deny”.

 “Deny” rules take precedence over normal (allow) rules and silence 
logging, unless you specify “audit deny” instead of “deny”.
 “Deny” keyword means “I know the program will try to access that, 

but it doesn’t really need to, so block it, but do not spam my logs 
with these attempts”

 Example : Enumerating /proc, cgroups...
 “Audit Deny” means “I want to be really sure this program can’t 

ever access this path, and if it tries to, I want to be notified”
 In case you’re not sure of the things you’ve written/included…

 Warning : deny rules are enforced even in complain mode !
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Wine protection: new user
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Filter filesystem access
 Source: 

https://doc.ubuntu-fr.org/wine#deplacer_le_repertoire_de_w
ine

 Less effective than AppArmor

https://doc.ubuntu-fr.org/wine#deplacer_le_repertoire_de_wine
https://doc.ubuntu-fr.org/wine#deplacer_le_repertoire_de_wine
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Filter filesystem access
 Intial configuration

 After each install

$ sudo adduser --home /home/wine --disabled-password --disabled-login wine
$ sudo mv -iv .wine/ /home/wine/​.wine 
$ sudo chown -R wine:wine /home/wine
​$ sudo adduser $USER wine
​$ sudo chmod -R ug+rw /home/wine

$ ​sudo chown -R wine:wine /home/wine 
$ ​​sudo chmod ug+x zorglub.exe
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Other solution
 Restrict wine accessing the filesystem

 However → https://forum.winehq.org/viewtopic.php?t=7449 

https://forum.winehq.org/viewtopic.php?t=7449
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Conclusion



62

62

Conclusion
 Do not run software without asking yourself if it can do 

something malicious
 Learn how your software is working
 Harden you system
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https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/
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