
13 October 2023

Synacktiv

Thomas Bouzerar and Thomas Imbert

Breaking Out of the Box
Technical analysis of VirtualBox VM escape with Windows LPE

Agenda

1 Introduction

2 VirtualBox

3 Windows

4 Conclusion

3/48

About us

Thomas Bouzerar
@MajorTomSec
Security researcher at Synacktiv

Thomas Imbert
@masthoon
Security researcher at Synacktiv

Synacktiv is hiring!
Offensive security company
Pentest, Reverse engineering, Development, Incident response
Offices in Paris, Toulouse, Rennes, Lyon, Lille

4/48

Pwn2Own

Ethical hacking contest organized by Zero Day Initiative (ZDI)
Edition Pwn2Own Vancouver 2023 in March

Targets: Virtualization, browsers, OS, Tesla, ...

* Add‐on prize: Additional price for chaining with a Windows LPE

5/48

Pwn2Own - Rules

VirtualBox escape with Windows LPE
2 months to prepare
3 attempts of 10 minutes maximum
Exploit chain:

VirtualBox Virtual Machine to Host code execution
Windows host unprivileged user to SYSTEM account

Total prize: $90,000

Agenda

1 Introduction

2 VirtualBox

3 Windows

4 Conclusion

7/48

Introduction to VirtualBox
Type 2 hypervisor
Open‐source

Virtual Box Components

8/48

Introduction to VirtualBox (2)

Virtual Box Attack Surface

9/48

VirtualBox

Quite large codebase
No prior knowledge of the target
Where do we start ?

Latest version when we started looking at VirtualBox was:

VirtualBox 7.0.6
Released January 17 2023
Latest major update was VirtualBox 7.0.0 (released October 10 2022)

Introduces new virtual devices (IOMMU, TPM)
EHCI/XHCI open‐sourcing
EFI supports Secure Boot

According to Pwn2Own rules, target guest OS is now Windows 11
TPM might be a device of interest here

9/48

VirtualBox

Quite large codebase
No prior knowledge of the target
Where do we start ?

Latest version when we started looking at VirtualBox was:

VirtualBox 7.0.6
Released January 17 2023
Latest major update was VirtualBox 7.0.0 (released October 10 2022)

Introduces new virtual devices (IOMMU, TPM)
EHCI/XHCI open‐sourcing
EFI supports Secure Boot

According to Pwn2Own rules, target guest OS is now Windows 11
TPM might be a device of interest here

9/48

VirtualBox

Quite large codebase
No prior knowledge of the target
Where do we start ?

Latest version when we started looking at VirtualBox was:

VirtualBox 7.0.6
Released January 17 2023
Latest major update was VirtualBox 7.0.0 (released October 10 2022)

Introduces new virtual devices (IOMMU, TPM)
EHCI/XHCI open‐sourcing
EFI supports Secure Boot

According to Pwn2Own rules, target guest OS is now Windows 11
TPM might be a device of interest here

10/48

VirtualBox - TPM

Trusted Platform Module (TPM)

Wikipedia
Trusted Platform Module is an international standard for a secure cryptoprocessor, a dedicated microcontroller
designed to secure hardware through integrated cryptographic keys.

The term can also refer to a chip conforming to the standard.
One of Windows 11’s system requirements is TPM 2.0.

11/48

VirtualBox

TPM is mandatory since Windows 11
Easy to interact with

Looks like a good first device to look at

grep for ”TPM” in the code base
Most interesting results are:

./src/libs/libtpms/*

./src/VBox/Devices/Security/DevTpm.cpp

./src/VBox/Devices/Security/DrvTpmEmu.cpp

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp

./src/VBox/Devices/Security/DrvTpmHost.cpp

libtpms is an open‐source library capable of emulating TPM in hypervisors, also used by QEMU

11/48

VirtualBox

TPM is mandatory since Windows 11
Easy to interact with

Looks like a good first device to look at

grep for ”TPM” in the code base
Most interesting results are:

./src/libs/libtpms/*

./src/VBox/Devices/Security/DevTpm.cpp

./src/VBox/Devices/Security/DrvTpmEmu.cpp

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp

./src/VBox/Devices/Security/DrvTpmHost.cpp

libtpms is an open‐source library capable of emulating TPM in hypervisors, also used by QEMU

11/48

VirtualBox

TPM is mandatory since Windows 11
Easy to interact with

Looks like a good first device to look at

grep for ”TPM” in the code base
Most interesting results are:

./src/libs/libtpms/*

./src/VBox/Devices/Security/DevTpm.cpp

./src/VBox/Devices/Security/DrvTpmEmu.cpp

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp

./src/VBox/Devices/Security/DrvTpmHost.cpp

libtpms is an open‐source library capable of emulating TPM in hypervisors, also used by QEMU

11/48

VirtualBox

TPM is mandatory since Windows 11
Easy to interact with

Looks like a good first device to look at

grep for ”TPM” in the code base
Most interesting results are:

./src/libs/libtpms/*

./src/VBox/Devices/Security/DevTpm.cpp

./src/VBox/Devices/Security/DrvTpmEmu.cpp

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp

./src/VBox/Devices/Security/DrvTpmHost.cpp

libtpms is an open‐source library capable of emulating TPM in hypervisors, also used by QEMU

12/48

VirtualBox - TPM

Time to dig in the code

./src/VBox/Devices/Security/DevTpm.cpp
Manages the TPM virtual device

./src/VBox/Devices/Security/DrvTpmEmu.cpp
Implementation of a virtual TPM using swtpm (yet another library)

./src/VBox/Devices/Security/DrvTpmHost.cpp
TPM bridge to the host TPM chip

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
TPM emulator using libtpms

Reading through the code, we can quickly focus on DevTpm.cpp and DrvTpmEmuTpms.cpp
Responsible for emulating and interacting with the default virtual TPM device

12/48

VirtualBox - TPM

Time to dig in the code

./src/VBox/Devices/Security/DevTpm.cpp
Manages the TPM virtual device

./src/VBox/Devices/Security/DrvTpmEmu.cpp
Implementation of a virtual TPM using swtpm (yet another library)

./src/VBox/Devices/Security/DrvTpmHost.cpp
TPM bridge to the host TPM chip

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
TPM emulator using libtpms

Reading through the code, we can quickly focus on DevTpm.cpp and DrvTpmEmuTpms.cpp
Responsible for emulating and interacting with the default virtual TPM device

12/48

VirtualBox - TPM

Time to dig in the code

./src/VBox/Devices/Security/DevTpm.cpp
Manages the TPM virtual device

./src/VBox/Devices/Security/DrvTpmEmu.cpp
Implementation of a virtual TPM using swtpm (yet another library)

./src/VBox/Devices/Security/DrvTpmHost.cpp
TPM bridge to the host TPM chip

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
TPM emulator using libtpms

Reading through the code, we can quickly focus on DevTpm.cpp and DrvTpmEmuTpms.cpp
Responsible for emulating and interacting with the default virtual TPM device

12/48

VirtualBox - TPM

Time to dig in the code

./src/VBox/Devices/Security/DevTpm.cpp
Manages the TPM virtual device

./src/VBox/Devices/Security/DrvTpmEmu.cpp
Implementation of a virtual TPM using swtpm (yet another library)

./src/VBox/Devices/Security/DrvTpmHost.cpp
TPM bridge to the host TPM chip

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
TPM emulator using libtpms

Reading through the code, we can quickly focus on DevTpm.cpp and DrvTpmEmuTpms.cpp
Responsible for emulating and interacting with the default virtual TPM device

12/48

VirtualBox - TPM

Time to dig in the code

./src/VBox/Devices/Security/DevTpm.cpp
Manages the TPM virtual device

./src/VBox/Devices/Security/DrvTpmEmu.cpp
Implementation of a virtual TPM using swtpm (yet another library)

./src/VBox/Devices/Security/DrvTpmHost.cpp
TPM bridge to the host TPM chip

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
TPM emulator using libtpms

Reading through the code, we can quickly focus on DevTpm.cpp and DrvTpmEmuTpms.cpp
Responsible for emulating and interacting with the default virtual TPM device

12/48

VirtualBox - TPM

Time to dig in the code

./src/VBox/Devices/Security/DevTpm.cpp
Manages the TPM virtual device

./src/VBox/Devices/Security/DrvTpmEmu.cpp
Implementation of a virtual TPM using swtpm (yet another library)

./src/VBox/Devices/Security/DrvTpmHost.cpp
TPM bridge to the host TPM chip

./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
TPM emulator using libtpms

Reading through the code, we can quickly focus on DevTpm.cpp and DrvTpmEmuTpms.cpp
Responsible for emulating and interacting with the default virtual TPM device

13/48

VirtualBox - DevTpm

DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

Set‐up of the device is done in tpmR3Construct for the Ring‐3 side
Registers a new MMIO region for the VM at a fixed location (0xFED40000)
Read and write handlers to the MMIO region are tpmMmioRead and tpmMmioWrite

Most of the TPM emulator logic is done in R3
Invoked methods from R0 will often jump to the R3 implementation

So let’s look into those MMIO handlers!

13/48

VirtualBox - DevTpm

DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

Set‐up of the device is done in tpmR3Construct for the Ring‐3 side
Registers a new MMIO region for the VM at a fixed location (0xFED40000)
Read and write handlers to the MMIO region are tpmMmioRead and tpmMmioWrite

Most of the TPM emulator logic is done in R3
Invoked methods from R0 will often jump to the R3 implementation

So let’s look into those MMIO handlers!

13/48

VirtualBox - DevTpm

DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

Set‐up of the device is done in tpmR3Construct for the Ring‐3 side
Registers a new MMIO region for the VM at a fixed location (0xFED40000)
Read and write handlers to the MMIO region are tpmMmioRead and tpmMmioWrite

Most of the TPM emulator logic is done in R3
Invoked methods from R0 will often jump to the R3 implementation

So let’s look into those MMIO handlers!

13/48

VirtualBox - DevTpm

DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

Set‐up of the device is done in tpmR3Construct for the Ring‐3 side
Registers a new MMIO region for the VM at a fixed location (0xFED40000)
Read and write handlers to the MMIO region are tpmMmioRead and tpmMmioWrite

Most of the TPM emulator logic is done in R3
Invoked methods from R0 will often jump to the R3 implementation

So let’s look into those MMIO handlers!

14/48

VirtualBox - tpmMmioRead

static DECLCALLBACK(VBOXSTRICTRC) tpmMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
{

/* ...*/
uint64_t u64;
rc = tpmMmioFifoRead(pDevIns, pThis, pLoc, bLoc, uReg, &u64, cb);
/* ... */

}

15/48

VirtualBox - tpmMmioFifoRead

static VBOXSTRICTRC tpmMmioFifoRead(PPDMDEVINS pDevIns, PDEVTPM pThis, PDEVTPMLOCALITY pLoc,
uint8_t bLoc, uint32_t uReg, uint64_t *pu64, size_t cb)

{
/* ... */
if (pThis->offCmdResp <= pThis->cbCmdResp - cb)
{

memcpy(pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);
pThis->offCmdResp += (uint32_t)cb;

}
else

memset(pu64, 0xff, cb);
/* ... */

}

No check on cb !

15/48

VirtualBox - tpmMmioFifoRead

static VBOXSTRICTRC tpmMmioFifoRead(PPDMDEVINS pDevIns, PDEVTPM pThis, PDEVTPMLOCALITY pLoc,
uint8_t bLoc, uint32_t uReg, uint64_t *pu64, size_t cb)

{
/* ... */
if (pThis->offCmdResp <= pThis->cbCmdResp - cb)
{

memcpy(pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);
pThis->offCmdResp += (uint32_t)cb;

}
else

memset(pu64, 0xff, cb);
/* ... */

}

No check on cb !

16/48

VirtualBox - tpmMmioFifoRead

memcpy(pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);

Stack buffer overflow with controlled data
pu64 points to a stack allocated 64‐bit integer
abCmdResp is a shared buffer for input commands and response data
cb is the size of the read as requested by the VMEXIT trap

So, how do we trigger it ?

A few ideas:
Instructions which trigger atomic loads of >8 bytes

AVX instructions
x87 instructions (FRSTOR, ...)

DMA

But we don’t even understand the architecture of the hypervisor yet!

16/48

VirtualBox - tpmMmioFifoRead

memcpy(pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);

Stack buffer overflow with controlled data
pu64 points to a stack allocated 64‐bit integer
abCmdResp is a shared buffer for input commands and response data
cb is the size of the read as requested by the VMEXIT trap

So, how do we trigger it ?

A few ideas:
Instructions which trigger atomic loads of >8 bytes

AVX instructions
x87 instructions (FRSTOR, ...)

DMA

But we don’t even understand the architecture of the hypervisor yet!

16/48

VirtualBox - tpmMmioFifoRead

memcpy(pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);

Stack buffer overflow with controlled data
pu64 points to a stack allocated 64‐bit integer
abCmdResp is a shared buffer for input commands and response data
cb is the size of the read as requested by the VMEXIT trap

So, how do we trigger it ?

A few ideas:
Instructions which trigger atomic loads of >8 bytes

AVX instructions
x87 instructions (FRSTOR, ...)

DMA

But we don’t even understand the architecture of the hypervisor yet!

16/48

VirtualBox - tpmMmioFifoRead

memcpy(pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);

Stack buffer overflow with controlled data
pu64 points to a stack allocated 64‐bit integer
abCmdResp is a shared buffer for input commands and response data
cb is the size of the read as requested by the VMEXIT trap

So, how do we trigger it ?

A few ideas:
Instructions which trigger atomic loads of >8 bytes

AVX instructions
x87 instructions (FRSTOR, ...)

DMA

But we don’t even understand the architecture of the hypervisor yet!

17/48

VirtualBox - Going deeper

No information leak so far
Can we make our own ?

First approach
Windows DLL base addresses are aligned on 0x10000
Partial RIP overwrite

We need control over the size of the overflow
Overwrite part of the response buffer with host pointers
Trigger the bug a second time for code execution

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...

Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite

Most of those methods end up calling PGMPhysRead /PGMPhysWrite

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...

Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite

Most of those methods end up calling PGMPhysRead /PGMPhysWrite

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...

Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite

Most of those methods end up calling PGMPhysRead /PGMPhysWrite

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...

Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite

Most of those methods end up calling PGMPhysRead /PGMPhysWrite

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...
Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite

Most of those methods end up calling PGMPhysRead /PGMPhysWrite

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...
Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite

Most of those methods end up calling PGMPhysRead /PGMPhysWrite

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...
Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite

Most of those methods end up calling PGMPhysRead /PGMPhysWrite

18/48

VirtualBox - Going deeper

We need control over the size of the overflow
VirtualBox exposes multiple API methods for interacting with the guest physical memory:

PGMPhysRead
PGMPhysWrite

They go through the MMIO handlers in case of MMIO addresses!

Many wrappers around them: pdmR3DevHlp_PhysRead , pdmR0DevHlp_PhysRead , ...
Or around those wrappers themselves: PDMDevHlpPhysRead , PDMDevHlpPhysReadMeta , ...

Basically, grep for PhysRead or PhysWrite
Most of those methods end up calling PGMPhysRead /PGMPhysWrite

19/48

VirtualBox - Going deeper

VMMDev device
VMMDev is a virtual device used for Host <‐> Guest communication

Most features are disabled by default, but the device itself is enabled!

HGCM Requests
Host‐Guest Communication Manager
The guest can send requests to the host

Simple RPC protocol
Format well documented by other researchers

Call parameters may be integers/buffers
Read from the guest memory (DMA)

19/48

VirtualBox - Going deeper

VMMDev device
VMMDev is a virtual device used for Host <‐> Guest communication

Most features are disabled by default, but the device itself is enabled!

HGCM Requests
Host‐Guest Communication Manager
The guest can send requests to the host

Simple RPC protocol
Format well documented by other researchers

Call parameters may be integers/buffers
Read from the guest memory (DMA)

20/48

VirtualBox - Controlled overflow size

Guest physical read with arbitrary size
Use HGCM calls as a DMA read oracle around PGMPhysRead

Remap the MMIO region to a virtual address using MmMapIoSpace
Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter

Address of the parameter is the remapped virtual address
Arbitrary size can be given

We get an arbitrary physical read in the guest with controlled size!
Proof of Concept gives us RIP control (full or partial overwrite)

Initial approach
Create our own infoleak (partial RIP overwrite)

Overwrite part of the response buffer with host pointers
No suitable gadget candidate :‐(

20/48

VirtualBox - Controlled overflow size

Guest physical read with arbitrary size
Use HGCM calls as a DMA read oracle around PGMPhysRead

Remap the MMIO region to a virtual address using MmMapIoSpace
Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter

Address of the parameter is the remapped virtual address
Arbitrary size can be given

We get an arbitrary physical read in the guest with controlled size!
Proof of Concept gives us RIP control (full or partial overwrite)

Initial approach
Create our own infoleak (partial RIP overwrite)

Overwrite part of the response buffer with host pointers
No suitable gadget candidate :‐(

20/48

VirtualBox - Controlled overflow size

Guest physical read with arbitrary size
Use HGCM calls as a DMA read oracle around PGMPhysRead

Remap the MMIO region to a virtual address using MmMapIoSpace
Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter

Address of the parameter is the remapped virtual address
Arbitrary size can be given

We get an arbitrary physical read in the guest with controlled size!
Proof of Concept gives us RIP control (full or partial overwrite)

Initial approach
Create our own infoleak (partial RIP overwrite)

Overwrite part of the response buffer with host pointers

No suitable gadget candidate :‐(

20/48

VirtualBox - Controlled overflow size

Guest physical read with arbitrary size
Use HGCM calls as a DMA read oracle around PGMPhysRead

Remap the MMIO region to a virtual address using MmMapIoSpace
Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter

Address of the parameter is the remapped virtual address
Arbitrary size can be given

We get an arbitrary physical read in the guest with controlled size!
Proof of Concept gives us RIP control (full or partial overwrite)

Initial approach
Create our own infoleak (partial RIP overwrite)

Overwrite part of the response buffer with host pointers
No suitable gadget candidate :‐(

21/48

VirtualBox - PGMPhysRead

22/48

VirtualBox - PGMPhysRead

23/48

VirtualBox - PGMPhysRead

24/48

VirtualBox - PGMPhysRead

25/48

VirtualBox - PGMPhysRead

26/48

VirtualBox - PGMPhysRead

27/48

VirtualBox - PGMPhysRead

28/48

VirtualBox - PGMPhysRead

29/48

VirtualBox - PGMPhysRead

30/48

VirtualBox - PGMPhysRead

Any call to PGMPhysRead which does not validate its return value would potentially leak data
We can leak any kind of data!

Uninitialized memory read in low level API

31/48

VirtualBox - PGMPhysRead

Finding a good leak candidate
Need to find a call to PGMPhysRead from a default device which:

Reads in a stack buffer
Does not validate the return value
Writes back the data at a known location

eXtensible Host Controller Interface (xHCI)
Does a lot of physical memory read/write accesses
Copies data from arbitrary physical addresses to other arbitrary physical addresses

31/48

VirtualBox - PGMPhysRead

Finding a good leak candidate
Need to find a call to PGMPhysRead from a default device which:

Reads in a stack buffer
Does not validate the return value
Writes back the data at a known location

eXtensible Host Controller Interface (xHCI)
Does a lot of physical memory read/write accesses
Copies data from arbitrary physical addresses to other arbitrary physical addresses

32/48

VirtualBox - xHCI

static unsigned xhciR3ConfigureDevice(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uInpCtxAddr, uint8_t uSlotID, bool fDC)
{

/* ... */
XHCI_DEV_CTX dc_inp; // sizeof(XHCI_DEV_CTX) = 0x400
XHCI_DEV_CTX dc_out;
/* ... */
PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &dc_inp, num_inp_ctx * sizeof(XHCI_DS_ENTRY));
/* ... */
for (uDCI = 2; uDCI < 32; ++uDCI)
{

/* ... */
dc_out.entry[uDCI].ep = dc_inp.entry[uDCI].ep;
/* ... */

}
/* ... */
PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY));
/* ... */

}

Almost 0x400 bytes of Uninitialized stack memory read!

33/48

VirtualBox - Exploitation

Information leak allows reading:
Return values
Stack canaries

Spoiler: for performance reasons, there is no stack canary in VirtualBox...

Defeat ASLR, build a ROP‐chain, execute a shellcode

Shellcode
Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
Call PGMPhysRead to read PE file from guest memory
Write PE file in %ProgramData%\a.exe
Call WinExec to execute stage 2

100% reliable VM escape!

33/48

VirtualBox - Exploitation

Information leak allows reading:
Return values
Stack canaries

Spoiler: for performance reasons, there is no stack canary in VirtualBox...

Defeat ASLR, build a ROP‐chain, execute a shellcode

Shellcode
Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
Call PGMPhysRead to read PE file from guest memory
Write PE file in %ProgramData%\a.exe
Call WinExec to execute stage 2

100% reliable VM escape!

33/48

VirtualBox - Exploitation

Information leak allows reading:
Return values
Stack canaries

Spoiler: for performance reasons, there is no stack canary in VirtualBox...

Defeat ASLR, build a ROP‐chain, execute a shellcode

Shellcode
Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
Call PGMPhysRead to read PE file from guest memory
Write PE file in %ProgramData%\a.exe
Call WinExec to execute stage 2

100% reliable VM escape!

33/48

VirtualBox - Exploitation

Information leak allows reading:
Return values
Stack canaries

Spoiler: for performance reasons, there is no stack canary in VirtualBox...

Defeat ASLR, build a ROP‐chain, execute a shellcode

Shellcode
Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
Call PGMPhysRead to read PE file from guest memory
Write PE file in %ProgramData%\a.exe
Call WinExec to execute stage 2

100% reliable VM escape!

33/48

VirtualBox - Exploitation

Information leak allows reading:
Return values
Stack canaries

Spoiler: for performance reasons, there is no stack canary in VirtualBox...

Defeat ASLR, build a ROP‐chain, execute a shellcode

Shellcode
Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
Call PGMPhysRead to read PE file from guest memory
Write PE file in %ProgramData%\a.exe
Call WinExec to execute stage 2

100% reliable VM escape!

33/48

VirtualBox - Exploitation

Information leak allows reading:
Return values
Stack canaries

Spoiler: for performance reasons, there is no stack canary in VirtualBox...

Defeat ASLR, build a ROP‐chain, execute a shellcode

Shellcode
Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
Call PGMPhysRead to read PE file from guest memory
Write PE file in %ProgramData%\a.exe
Call WinExec to execute stage 2

100% reliable VM escape!

Agenda

1 Introduction

2 VirtualBox

3 Windows

4 Conclusion

35/48

Windows LPE

Exploit chain
VirtualBox escape exploit

VirtualBox VM process runs as unprivileged user with Medium Integrity Level
Windows Local Privilege Escalation

LargeWindows attack surface
Pwn2Own requires kernel mode vulnerability

36/48

Research

Objective
Find a quick and stable bug in a Windows driver
Exploit it and spawn a SYSTEM command prompt

Finding a target
Static analysis of random drivers in System32\drivers

Pick ones with interesting imports: %Probe%
Review IOCTL handlers for memory corruption or logic bugs
Many drivers cannot be loaded without administrator access

37/48

MSKSSRV

Part ofMicrosoft Streaming component
Content Streaming between two processes

Implemented as shared memory

Driver automatically loaded on demand
Without administrator access
Device path:
\\?\root#system#0000#{3c0d501a-140b-11d1-b40f-00a0c9223196}\{96e080c7-143c-11d1-b40f-00a0c9223196}&{3c0d501a-140b-11d1-b40f-00a0c9223196}

38/48

MSKSSRV - Initialization A

39/48

MSKSSRV - Initialization B

40/48

MSKSSRV - Stream Publish

41/48

MSKSSRV - Stream Consume

42/48

MSKSSRV - Shared Memory

43/48

MSKSSRV Vulnerability

MSKSSRV does NOT validate the address of the buffer
Any virtual address can be mapped even Kernel mode memory

// Vulnerability in the function FsAllocAndLockMdl (from IOCTL 0x2F0408)
Mdl = IoAllocateMdl(InputAddress, InputSize, 0, 0, NULL);
/*
MmProbeAndLockPages Invalid Access Mode
* KernelMode used instead of UserMode
* The kernel will not check (called Probe) if the address belongs in userland

*/
MmProbeAndLockPages(Mdl, KernelMode, IoWriteAccess);

Vulnerability Outcome
Arbitrary kernel virtual memory may be mapped to user‐mode with read and write access
→ Arbitrary kernel read and write

44/48

MSKSSRV Exploitation

Locate the TOKEN
Kernel TOKEN object describes the security context of the process
The kernel‐mode address of the current process token can be obtained using NtQuerySystemInformation

Corrupt the TOKEN
Map the TOKEN to user‐mode using the vulnerability
Overwrite the TOKEN privileges bit‐field to gain all privileges

Escalate to SYSTEM
Using the SeDebugPrivilege , hijack a SYSTEM process
Run SYSTEM command prompt !

45/48

MSKSSRV Result

SYSTEM Command Prompt !

Exploit takes less than 1 second
100% stable bug

Missing probe are powerful bugs

Agenda

1 Introduction

2 VirtualBox

3 Windows

4 Conclusion

47/48

Conclusion

Simple bugs
There are still low hanging fruits

There are also deeper bugs

No real mitigation

No stack canary in VirtualBox

Smash the stack like it’s 2010

Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

47/48

Conclusion

Simple bugs
There are still low hanging fruits
There are also deeper bugs

No real mitigation

No stack canary in VirtualBox

Smash the stack like it’s 2010

Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

47/48

Conclusion

Simple bugs
There are still low hanging fruits
There are also deeper bugs

No real mitigation

No stack canary in VirtualBox

Smash the stack like it’s 2010

Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

47/48

Conclusion

Simple bugs
There are still low hanging fruits
There are also deeper bugs

No real mitigation
No stack canary in VirtualBox

Smash the stack like it’s 2010
Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

47/48

Conclusion

Simple bugs
There are still low hanging fruits
There are also deeper bugs

No real mitigation
No stack canary in VirtualBox

Smash the stack like it’s 2010

Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

47/48

Conclusion

Simple bugs
There are still low hanging fruits
There are also deeper bugs

No real mitigation
No stack canary in VirtualBox

Smash the stack like it’s 2010
Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

47/48

Conclusion

Simple bugs
There are still low hanging fruits
There are also deeper bugs

No real mitigation
No stack canary in VirtualBox

Smash the stack like it’s 2010
Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

47/48

Conclusion

Simple bugs
There are still low hanging fruits
There are also deeper bugs

No real mitigation
No stack canary in VirtualBox

Smash the stack like it’s 2010
Relatively weak mitigations in Windows

Disable AV
Defender blocked our first attempt

48/48

Conclusion
3‐bugs chain

2 unique bugs, 1 bug collision (TPM stack buffer overflow)

We won Pwn2Own!

Try it, it’s fun!

THANKS FOR YOUR ATTENTION

QUESTIONS?

	Introduction
	VirtualBox
	Windows
	Conclusion

