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About me

◼ Thomas Imbert

◼ @masthoon

◼ Security Engineer at Synacktiv

◼ Offensive security company

◼ Pentest, Reverse engineering, Development, Incident response

◼ Offices in France and we are hiring!
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Agenda

◼ Introduction to Pwn2Own contest

◼ Finding and exploiting a vulnerability in Cloud Filter (cldflt.sys)

◼ Advances in Windows Kernel mitigations

◼ Analysis of a second LPE in MSKS Server driver (mskssrv.sys)
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Pwn2Own

◼ Ethical hacking contest organized by Zero Day Initiative (ZDI)

◼ Pwn2Own Vancouver 2023 in March

◼ Applications, virtualization, browsers, OS, Automotive: Tesla, …
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Pwn2Own – Windows entries

◼ One entry per target

◼ 3 attempts of 10 minutes

◼ Two exploits developed:

◼ Standalone Windows LPE from unprivileged user

◼ Windows LPE Add-on after VirtualBox escape
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Pwn2Own – Results

◼ Synacktiv entries: Windows, macOS, Ubuntu, VirtualBox and Tesla
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Cloud Filter
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◼ Pwn2Own requires vulnerability in kernel

◼ 3 attempts of 10 minutes: long to trigger / unstable bugs works

◼ Idea: Pick a driver with a different interface than classic IOCTL

◼ Hopefully less reviewed / fuzzed

➢ Filter communication port

Incentives for picking cldflt.sys
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◼ Communication mechanism between User and Kernel mode

◼ Port identified by a name, used by Filesystem Filter drivers

Filter Communication Port

Internally, it uses

IOCTL and FSCTL to the 

Filter Manager 

(fltMgr.sys)
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◼ Cloud Filter port

◼ One of the few interfaces reachable from unprivileged user

◼ ~20 different messages (excluding FSCTL)

◼ Asynchronous handling

◼ Complex implementation

◼ Quick manual review found a couple of race conditions

◼ Not exploitable or very hard to trigger

Incentives for picking cldflt.sys (2)



12

12

◼ File System Minifilter driver

◼ Windows component: Cloud Files API

◼ Manage placeholders and hydrate them on access

◼ Forward file access callbacks to user-mode sync provider process

◼ Sync provider process synchronize files with remote cloud storage

◼ Utilized by OneDrive

Cloud Filter (cldflt.sys)
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◼ Manual review takes too long especially for Pwn2Own

◼ First, write a simple sync provider:

◼ Cloud Filter API documentation

◼ Windows CloudMirror sample

◼ James Forshaw, cldflt CVE PoC

Fuzzing – First steps
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◼ Add a few files and directories placeholders (CfCreatePlaceholders)

◼ Implement basic support for callbacks (with random errors and mutations)

Fuzzing – Writing the sync provider harness

User-Mode callbacks called in response to kernel-mode callbacks of cldflt
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◼ Write a client process to execute file system operations

◼ Open

◼ Read

◼ Write

◼ Delete

◼ Rename

◼ List

◼ …

Fuzzing – Filesystem fuzzing

Generated operations
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◼ Attach a kernel debugger or configure kernel crash dump storage

◼ Configure Special Pool with verifier.exe to improve memory 
corruption detection

◼ Special Pool on ntoskrnl.exe, fltMgr.sys and cldflt.sys

◼ Crash on Use-After-Free and Out-Of-Bounds access

Fuzzing – Windows driver tips



17

17

◼ Got an interesting crash after a minute

 

Fuzzing – Crash analysis

nt!IoCancelIrp+0x2b:
fffff802`713919cb c6434401    mov   byte ptr [rbx+44h],1 // 0x5c003a0043003244=??

PROCESS_NAME: explorer.exe

STACK_TEXT: 
nt!IoCancelIrp+0x2b
FLTMGR!FltCancelIo+0x20
cldflt!CldiStreamStartCountdownTimer+0x143
cldflt!CldiStreamRestartCountdownTimer+0x66
cldflt!CldStreamQueryProgress+0x141a
cldflt!CldiPortProcessQueryProgress+0x2b7
cldflt!CldiPortProcessFilterControl+0x4d
cldflt!CldiPortNotifyMessage+0x824
FLTMGR!FltpFilterMessage+0xda
...
nt!NtDeviceIoControlFile+0x56
nt!KiSystemServiceCopyEnd+0x28
ntdll!NtDeviceIoControlFile+0x14
FLTLIB!FilterpDeviceIoControl+0x136
FLTLIB!FilterSendMessage+0x31
cldapi!CfQueryProgress+0x3e7

The IRP object pointer 

(IoCancelIrp) seems to be 

corrupted with a wide string.

For curious reader: Special Pool 

did not catch the UAF because 

of the minute delay.
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◼ Each file operation is associated with a I/O request packet (IRP) in 
kernel 

◼ The Filter Manager creates an IRP control object which saves the 
IRP and the callback data (FLT_CALLBACK_DATA) for each 
filesystem operation

Vulnerability in Cloud Filter
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◼ The Cloud Filter stores this FLT_CALLBACK_DATA on pending I/O 
(ex: user-mode callback not answering) in a global list.

◼ After a minute, if the request is still pending in the global list, the 
IRP is cancelled using IoCancelIrp.

◼ This prevents a sync provider to block file I/O indefinitely.

Vulnerability in Cloud Filter (2)
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◼ Vulnerability

◼ The Cloud Filter Global 
List is not cleared 
properly if the sync 
provider die but the IRP 
control object is freed.

Vulnerability in Cloud Filter (3)
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◼ The vulnerability is an Use-After-Free of the IRP Control Object 
allocated by FltMgr.sys in FltpAllocateIrpCtrlInternal on the 
NonPagedNx pool.

◼ To trigger the vulnerability, three processes are required:

◼ Sync provider never answering the file deletion (no ACK_DELETE)

◼ Client process deleting a placeholder file

◼ A scheduler starting both processes and killing them

◼ Waiting 1 minute and calling CfQueryProgress to trigger the timer check

Use-After-Free Vulnerability
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◼ If the UAF allocation content is controlled:

◼ Arbitrary IRP pointer passed to IoCancelIrp

◼ Arbitrary function call primitive

Vulnerability primitives

BOOLEAN IoCancelIrp(PIRP Irp)
{ // Simplified
 KIRQL Irql = KeAcquireQueuedSpinLock(LockQueueIoCancelLock);
 Irp->Cancel = 1; // Arbitrary write byte with value 1
 PVOID CancelRoutinePtr = Irp->CancelRoutine;
 if ( CancelRoutinePtr )
 {
  CancelRoutinePtr(Irp->Tail.Overlay.CurrentStackLocation->DeviceObject, Irp); // Arbitrary function call
  return 1;
 }
}
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◼ Goal: Elevate our privileges to SYSTEM and run a command prompt

◼ Data only technique: Corrupt the current process TOKEN privileges

◼ Require: Arbitrary write and information leak of the TOKEN address

Windows kernel exploitation 101
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◼ No infoleak required: 

◼ By design Windows API NtQuerySystemInformation with 
SystemExtendedHandleInformation discloses the TOKEN address. 

◼ Note: Driver base address may be disclosed by SystemModuleInformation class. 

◼ It does not work in sandboxes.

Windows kernel exploitation info
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◼ Supervisor Mode Execution Protection (SMEP) and NX: 

◼ Enabled, function pointer must point to executable kernel memory

◼ Supervisor Mode Access Protection (SMAP): 

◼ Not enabled in most situations, possible to forge fake objects in user-mode 

memory

◼ Reuse allocation content: 

◼ Spray NonPagedNx using Named Pipe data entries (size 0x588)

Windows kernel exploitation info (2)
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◼ Control Flow Guard (CFG) validates indirect branch targets

◼ Arbitrary function call primitive is limited to valid targets

◼ _guard_dispatch_icall is called to check against a bitmap

◼ Instead of ROP gadgets, jump on function gadgets

◼ First 2 function parameters are controlled

◼ Chain allowed functions to control all parameters and achieve write primitive

Windows kernel Control Flow Guard
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◼ Assume, the IRP pointer in the UAF object is fully controlled and 
points to user mode memory

◼ Chain function gadget:

Windows kernel CFG Chain
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Windows kernel CFG Chain (2)
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Windows kernel CFG Chain (3)
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Windows kernel CFG Chain (4)

◼ Arbitrary write achieved !
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◼ Exploit steps:

◼ Prepare fake objects in user mode: IRP, PAGED_LOOKASIDE_LIST, UNICODE_STRING

◼ Trigger the IRP control object free by killing the processes

◼ Spray Named Pipe data entry to reuse the allocation (fake IRP points to UM)

◼ Wait one minute and trigger UAF vulnerability

◼ Verify token privileges are all granted thanks to the arbitrary write (gadgets chain)

◼ Spawn a SYSTEM shell (SeDebugPrivilege used to control winlogon process)

Cloud Filter exploit
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◼ Not very reliable

◼ But on fresh boot: >90%

◼ Exploit takes between 1 and 6 minutes

◼ Issue: IRP control object is not always free, a lookaside list is used for performance

◼ The vulnerability is played multiple times (8) to fill the lookaside list

◼ Perfect for Pwn2Own (3 attempts of 10 minutes with reboot)

◼ Worked on second try at P2O ! (After a BSOD in the first attempt)

Cloud Filter exploit notes
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◼ Manual review: 2 days

◼ Fuzzing: 1 day

◼ Root cause and reproduction: 3 days

◼ Exploit: 2 days

Cloud Filter timeline
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Windows Kernel Mitigations
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◼ Microsoft is actively working on mitigations to kill bug classes

◼ Zeroing most variables and pool allocations prevents uninitialized memory 

vulnerabilities

◼ CastGuard: mitigates C++ type confusions

◼ Also, Microsoft mitigates a few powerful exploit primitives:

◼ Thread PreviousMode overwrite

◼ KASLR by design infoleak

Will it work next year?
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◼ Thanks to Yarden and the security community, tracking changes 
on Insider builds:

KASLR infoleak future removal

This mitigation would break 

the previous exploit.

The bug would then require a 

powerful infoleak of kernel 

driver bases to build the 

function gadgets chain.
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◼ SMAP: 

◼ Enabled in functions (mostly interrupts) when the kernel is sure to never access 

user-mode memory

◼ The UAF access runs at IRQL DISPATCH_LEVEL which is not supposed to access 

user-mode memory, but SMAP is not enabled and allow for easier exploit

◼ CFG:

◼ Current kernel implementation quite limited, lack granularity and allow a lot of 

function targets (while user-mode has a more fine grained solution: XFG)

Mitigation status

Both mitigations are hard or impossible to expand due to compatibility issues with 

3rd party drivers.
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◼ Control Flow Enforcement Technology (CET): 

◼ Protect control-flow hijacking using a shadow stack and control transfer 

instructions

◼ Not designed to prevent function gadgets chain

◼ Hypervisor Protected Code Integrity (HVCI):

◼ Protect kernel integrity, prevent executing custom code in kernel

◼ Not designed to detect data only attack on the token

Mitigation status (2)



39

39

◼ Microsoft seems to focus on high impact scenarios

◼ Restricting attack surface of browser and application sandboxes

◼ Reviewing and fuzzing remote services, hypervisor and kernel (ntoskrnl)

◼ Local privilege escalation from unprivileged user

◼ Probably not high priority

◼ KASLR infoleak hardening proves some efforts

◼ Opinion: LPE will still be feasible with 1 kernel bug but it will 
require more work (or better bugs)

Will it work next year? (2)
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◼ Objective: Find a stable bug to chain with VirtualBox exploit

◼ Reviewed random drivers for a quick win

◼ Pick a random driver in System32\drivers in IDA

◼ Look for simple IOCTL issues

◼ Found a couple of bugs in non-default drivers

◼ Optional features

◼ Impossible to load without admin access

Looking for another bug to exploit
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MSKSSRV – Introduction

◼ Part of Microsoft Streaming Service component

◼ Allow two processes to share content using Tx/Rx streams

◼ IOCTL interface

◼ Streams are basically shared memory (Section object or UM mapping)

◼ Driver automatically loaded on demand when opened

◼ No admin access required
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MSKSSRV – Quick win

◼ Found this function reachable with user-mode inputs:
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MSKSSRV – Quick win (2)

◼ MmProbeAndLockPages invalid access mode

◼ AccessMode parameter sets to KernelMode access mode
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Windows Parameter Probing 

◼ Windows Kernel must validate pointers coming from user-mode

◼ Using probe functions, the pointers and size are validated

◼ On Windows, the address is validated to be less than 0x7FFFFFFF0000

◼ Example API: ProbeForRead / ProbeForWrite

// MmProbeAndLockPages calls MiProbeAndLockPrepare which validates the address if AccessMode is set to UserMode
if ( AccessMode == UserMode )
{
  if ( !MdlLength
   || (MdlEndAddress = MdlLength + MdlVirtualAddress - 1, MdlEndAddress < MdlVirtualAddress)
   || MdlEndAddress > 0x7FFFFFFEFFFF )
  {
    return 0xC0000005i64;
  }
}
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MSKSSRV – Quick win (3)

◼ Driver IOCTL accepts kernel mode pointer in MDL creation

◼ IOCTL 0x2F0408 – FSRendezvousServer::PublishTx

◼ Memory Descriptor List (MDL)

◼ MDL is a kernel object describing one or more virtual memory ranges

◼ MDL stores the physical addresses corresponding to the virtual ranges

◼ MDL are used for I/O operations and DMA to map and lock memory 
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MSKSSRV – Vulnerability

◼ Driver IOCTL accepts kernel mode pointer in MDL creation

◼ IOCTL 0x2F0408 – FSRendezvousServer::PublishTx

◼ Resulting MDL can be mapped to user-mode

◼ IOCTL 0x2F0410 – FSRendezvousServer::ConsumeTx

◼ Arbitrary kernel virtual memory may be mapped to user-mode with 

read and write access

 

◼ Arbitrary kernel read and write achieved !
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MSKSSRV – Exploit

◼ Same goal: corrupt the Token privileges

◼ Steps:

◼ Again, leverage by design KASLR infoleak to disclose Token address

◼ Map the kernel page containing the Token to user-mode using the 

vulnerability

◼ Overwrite the privileges bitfield to gain SeDebugPrivilege

◼ Spawn a SYSTEM shell
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◼ 100% stable bug

◼ Missing probe are powerful bugs

◼ Especially this one since it gives read and write access

◼ Exploit takes less than 1 second

◼ Timeline: 1 day for manual review and exploit

◼ Worked on second try at P2O ! (Microsoft Defender blocked the first 
attempt)

MSKSSRV – Exploit notes



50

DEMO



Conclusion

◼ Pwn2Own is a great opportunity to challenge yourself

◼ Very fun and ethical contest

◼ Large attack surface

◼ Lots of Windows kernel exploitation documentation available online

◼ Vulnerabilities have been fixed in June: CVE-2023-29360 & CVE-2023-29361

◼ Try it!

◼ Windows Kernel Security is slowly improving but still attackable 
with limited means
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https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com



THANK
YOU!
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