
Windows Kernel Security
A Deep Dive into Two Exploits
Demonstrated at Pwn2Own

Thomas Imbert
Security researcher, Synacktiv
August 25, 2023

1

2

2

About me

◼ Thomas Imbert

◼ @masthoon

◼ Security Engineer at Synacktiv

◼ Offensive security company

◼ Pentest, Reverse engineering, Development, Incident response

◼ Offices in France and we are hiring!

3

3

Agenda

◼ Introduction to Pwn2Own contest

◼ Finding and exploiting a vulnerability in Cloud Filter (cldflt.sys)

◼ Advances in Windows Kernel mitigations

◼ Analysis of a second LPE in MSKS Server driver (mskssrv.sys)

4

Pwn2Own

5

5

Pwn2Own

◼ Ethical hacking contest organized by Zero Day Initiative (ZDI)

◼ Pwn2Own Vancouver 2023 in March

◼ Applications, virtualization, browsers, OS, Automotive: Tesla, …

6

6

Pwn2Own – Windows entries

◼ One entry per target

◼ 3 attempts of 10 minutes

◼ Two exploits developed:

◼ Standalone Windows LPE from unprivileged user

◼ Windows LPE Add-on after VirtualBox escape

7

7

Pwn2Own – Results

◼ Synacktiv entries: Windows, macOS, Ubuntu, VirtualBox and Tesla

8

Cloud Filter

9

9

◼ Pwn2Own requires vulnerability in kernel

◼ 3 attempts of 10 minutes: long to trigger / unstable bugs works

◼ Idea: Pick a driver with a different interface than classic IOCTL

◼ Hopefully less reviewed / fuzzed

➢ Filter communication port

Incentives for picking cldflt.sys

10

10

◼ Communication mechanism between User and Kernel mode

◼ Port identified by a name, used by Filesystem Filter drivers

Filter Communication Port

Internally, it uses

IOCTL and FSCTL to the

Filter Manager

(fltMgr.sys)

11

11

◼ Cloud Filter port

◼ One of the few interfaces reachable from unprivileged user

◼ ~20 different messages (excluding FSCTL)

◼ Asynchronous handling

◼ Complex implementation

◼ Quick manual review found a couple of race conditions

◼ Not exploitable or very hard to trigger

Incentives for picking cldflt.sys (2)

12

12

◼ File System Minifilter driver

◼ Windows component: Cloud Files API

◼ Manage placeholders and hydrate them on access

◼ Forward file access callbacks to user-mode sync provider process

◼ Sync provider process synchronize files with remote cloud storage

◼ Utilized by OneDrive

Cloud Filter (cldflt.sys)

13

13

◼ Manual review takes too long especially for Pwn2Own

◼ First, write a simple sync provider:

◼ Cloud Filter API documentation

◼ Windows CloudMirror sample

◼ James Forshaw, cldflt CVE PoC

Fuzzing – First steps

14

14

◼ Add a few files and directories placeholders (CfCreatePlaceholders)

◼ Implement basic support for callbacks (with random errors and mutations)

Fuzzing – Writing the sync provider harness

User-Mode callbacks called in response to kernel-mode callbacks of cldflt

15

15

◼ Write a client process to execute file system operations

◼ Open

◼ Read

◼ Write

◼ Delete

◼ Rename

◼ List

◼ …

Fuzzing – Filesystem fuzzing

Generated operations

16

16

◼ Attach a kernel debugger or configure kernel crash dump storage

◼ Configure Special Pool with verifier.exe to improve memory
corruption detection

◼ Special Pool on ntoskrnl.exe, fltMgr.sys and cldflt.sys

◼ Crash on Use-After-Free and Out-Of-Bounds access

Fuzzing – Windows driver tips

17

17

◼ Got an interesting crash after a minute

Fuzzing – Crash analysis

nt!IoCancelIrp+0x2b:
fffff802`713919cb c6434401 mov byte ptr [rbx+44h],1 // 0x5c003a0043003244=??

PROCESS_NAME: explorer.exe

STACK_TEXT:
nt!IoCancelIrp+0x2b
FLTMGR!FltCancelIo+0x20
cldflt!CldiStreamStartCountdownTimer+0x143
cldflt!CldiStreamRestartCountdownTimer+0x66
cldflt!CldStreamQueryProgress+0x141a
cldflt!CldiPortProcessQueryProgress+0x2b7
cldflt!CldiPortProcessFilterControl+0x4d
cldflt!CldiPortNotifyMessage+0x824
FLTMGR!FltpFilterMessage+0xda
...
nt!NtDeviceIoControlFile+0x56
nt!KiSystemServiceCopyEnd+0x28
ntdll!NtDeviceIoControlFile+0x14
FLTLIB!FilterpDeviceIoControl+0x136
FLTLIB!FilterSendMessage+0x31
cldapi!CfQueryProgress+0x3e7

The IRP object pointer

(IoCancelIrp) seems to be

corrupted with a wide string.

For curious reader: Special Pool

did not catch the UAF because

of the minute delay.

18

18

◼ Each file operation is associated with a I/O request packet (IRP) in
kernel

◼ The Filter Manager creates an IRP control object which saves the
IRP and the callback data (FLT_CALLBACK_DATA) for each
filesystem operation

Vulnerability in Cloud Filter

19

19

◼ The Cloud Filter stores this FLT_CALLBACK_DATA on pending I/O
(ex: user-mode callback not answering) in a global list.

◼ After a minute, if the request is still pending in the global list, the
IRP is cancelled using IoCancelIrp.

◼ This prevents a sync provider to block file I/O indefinitely.

Vulnerability in Cloud Filter (2)

20

20

◼ Vulnerability

◼ The Cloud Filter Global
List is not cleared
properly if the sync
provider die but the IRP
control object is freed.

Vulnerability in Cloud Filter (3)

21

21

◼ The vulnerability is an Use-After-Free of the IRP Control Object
allocated by FltMgr.sys in FltpAllocateIrpCtrlInternal on the
NonPagedNx pool.

◼ To trigger the vulnerability, three processes are required:

◼ Sync provider never answering the file deletion (no ACK_DELETE)

◼ Client process deleting a placeholder file

◼ A scheduler starting both processes and killing them

◼ Waiting 1 minute and calling CfQueryProgress to trigger the timer check

Use-After-Free Vulnerability

22

22

◼ If the UAF allocation content is controlled:

◼ Arbitrary IRP pointer passed to IoCancelIrp

◼ Arbitrary function call primitive

Vulnerability primitives

BOOLEAN IoCancelIrp(PIRP Irp)
{ // Simplified
 KIRQL Irql = KeAcquireQueuedSpinLock(LockQueueIoCancelLock);
 Irp->Cancel = 1; // Arbitrary write byte with value 1
 PVOID CancelRoutinePtr = Irp->CancelRoutine;
 if (CancelRoutinePtr)
 {
 CancelRoutinePtr(Irp->Tail.Overlay.CurrentStackLocation->DeviceObject, Irp); // Arbitrary function call
 return 1;
 }
}

23

23

◼ Goal: Elevate our privileges to SYSTEM and run a command prompt

◼ Data only technique: Corrupt the current process TOKEN privileges

◼ Require: Arbitrary write and information leak of the TOKEN address

Windows kernel exploitation 101

24

24

◼ No infoleak required:

◼ By design Windows API NtQuerySystemInformation with
SystemExtendedHandleInformation discloses the TOKEN address.

◼ Note: Driver base address may be disclosed by SystemModuleInformation class.

◼ It does not work in sandboxes.

Windows kernel exploitation info

25

25

◼ Supervisor Mode Execution Protection (SMEP) and NX:

◼ Enabled, function pointer must point to executable kernel memory

◼ Supervisor Mode Access Protection (SMAP):

◼ Not enabled in most situations, possible to forge fake objects in user-mode

memory

◼ Reuse allocation content:

◼ Spray NonPagedNx using Named Pipe data entries (size 0x588)

Windows kernel exploitation info (2)

26

26

◼ Control Flow Guard (CFG) validates indirect branch targets

◼ Arbitrary function call primitive is limited to valid targets

◼ _guard_dispatch_icall is called to check against a bitmap

◼ Instead of ROP gadgets, jump on function gadgets

◼ First 2 function parameters are controlled

◼ Chain allowed functions to control all parameters and achieve write primitive

Windows kernel Control Flow Guard

27

27

◼ Assume, the IRP pointer in the UAF object is fully controlled and
points to user mode memory

◼ Chain function gadget:

Windows kernel CFG Chain

28

28

Windows kernel CFG Chain (2)

29

29

Windows kernel CFG Chain (3)

30

30

Windows kernel CFG Chain (4)

◼ Arbitrary write achieved !

31

31

◼ Exploit steps:

◼ Prepare fake objects in user mode: IRP, PAGED_LOOKASIDE_LIST, UNICODE_STRING

◼ Trigger the IRP control object free by killing the processes

◼ Spray Named Pipe data entry to reuse the allocation (fake IRP points to UM)

◼ Wait one minute and trigger UAF vulnerability

◼ Verify token privileges are all granted thanks to the arbitrary write (gadgets chain)

◼ Spawn a SYSTEM shell (SeDebugPrivilege used to control winlogon process)

Cloud Filter exploit

32

32

◼ Not very reliable

◼ But on fresh boot: >90%

◼ Exploit takes between 1 and 6 minutes

◼ Issue: IRP control object is not always free, a lookaside list is used for performance

◼ The vulnerability is played multiple times (8) to fill the lookaside list

◼ Perfect for Pwn2Own (3 attempts of 10 minutes with reboot)

◼ Worked on second try at P2O ! (After a BSOD in the first attempt)

Cloud Filter exploit notes

33

33

◼ Manual review: 2 days

◼ Fuzzing: 1 day

◼ Root cause and reproduction: 3 days

◼ Exploit: 2 days

Cloud Filter timeline

34

Windows Kernel Mitigations

35

35

◼ Microsoft is actively working on mitigations to kill bug classes

◼ Zeroing most variables and pool allocations prevents uninitialized memory

vulnerabilities

◼ CastGuard: mitigates C++ type confusions

◼ Also, Microsoft mitigates a few powerful exploit primitives:

◼ Thread PreviousMode overwrite

◼ KASLR by design infoleak

Will it work next year?

36

36

◼ Thanks to Yarden and the security community, tracking changes
on Insider builds:

KASLR infoleak future removal

This mitigation would break

the previous exploit.

The bug would then require a

powerful infoleak of kernel

driver bases to build the

function gadgets chain.

37

37

◼ SMAP:

◼ Enabled in functions (mostly interrupts) when the kernel is sure to never access

user-mode memory

◼ The UAF access runs at IRQL DISPATCH_LEVEL which is not supposed to access

user-mode memory, but SMAP is not enabled and allow for easier exploit

◼ CFG:

◼ Current kernel implementation quite limited, lack granularity and allow a lot of

function targets (while user-mode has a more fine grained solution: XFG)

Mitigation status

Both mitigations are hard or impossible to expand due to compatibility issues with

3rd party drivers.

38

38

◼ Control Flow Enforcement Technology (CET):

◼ Protect control-flow hijacking using a shadow stack and control transfer

instructions

◼ Not designed to prevent function gadgets chain

◼ Hypervisor Protected Code Integrity (HVCI):

◼ Protect kernel integrity, prevent executing custom code in kernel

◼ Not designed to detect data only attack on the token

Mitigation status (2)

39

39

◼ Microsoft seems to focus on high impact scenarios

◼ Restricting attack surface of browser and application sandboxes

◼ Reviewing and fuzzing remote services, hypervisor and kernel (ntoskrnl)

◼ Local privilege escalation from unprivileged user

◼ Probably not high priority

◼ KASLR infoleak hardening proves some efforts

◼ Opinion: LPE will still be feasible with 1 kernel bug but it will
require more work (or better bugs)

Will it work next year? (2)

40

MSKSSRV

41

41

◼ Objective: Find a stable bug to chain with VirtualBox exploit

◼ Reviewed random drivers for a quick win

◼ Pick a random driver in System32\drivers in IDA

◼ Look for simple IOCTL issues

◼ Found a couple of bugs in non-default drivers

◼ Optional features

◼ Impossible to load without admin access

Looking for another bug to exploit

42

42

MSKSSRV – Introduction

◼ Part of Microsoft Streaming Service component

◼ Allow two processes to share content using Tx/Rx streams

◼ IOCTL interface

◼ Streams are basically shared memory (Section object or UM mapping)

◼ Driver automatically loaded on demand when opened

◼ No admin access required

43

43

MSKSSRV – Quick win

◼ Found this function reachable with user-mode inputs:

44

44

MSKSSRV – Quick win (2)

◼ MmProbeAndLockPages invalid access mode

◼ AccessMode parameter sets to KernelMode access mode

45

45

Windows Parameter Probing

◼ Windows Kernel must validate pointers coming from user-mode

◼ Using probe functions, the pointers and size are validated

◼ On Windows, the address is validated to be less than 0x7FFFFFFF0000

◼ Example API: ProbeForRead / ProbeForWrite

// MmProbeAndLockPages calls MiProbeAndLockPrepare which validates the address if AccessMode is set to UserMode
if (AccessMode == UserMode)
{
 if (!MdlLength
 || (MdlEndAddress = MdlLength + MdlVirtualAddress - 1, MdlEndAddress < MdlVirtualAddress)
 || MdlEndAddress > 0x7FFFFFFEFFFF)
 {
 return 0xC0000005i64;
 }
}

46

46

MSKSSRV – Quick win (3)

◼ Driver IOCTL accepts kernel mode pointer in MDL creation

◼ IOCTL 0x2F0408 – FSRendezvousServer::PublishTx

◼ Memory Descriptor List (MDL)

◼ MDL is a kernel object describing one or more virtual memory ranges

◼ MDL stores the physical addresses corresponding to the virtual ranges

◼ MDL are used for I/O operations and DMA to map and lock memory

47

47

MSKSSRV – Vulnerability

◼ Driver IOCTL accepts kernel mode pointer in MDL creation

◼ IOCTL 0x2F0408 – FSRendezvousServer::PublishTx

◼ Resulting MDL can be mapped to user-mode

◼ IOCTL 0x2F0410 – FSRendezvousServer::ConsumeTx

◼ Arbitrary kernel virtual memory may be mapped to user-mode with

read and write access

◼ Arbitrary kernel read and write achieved !

48

48

MSKSSRV – Exploit

◼ Same goal: corrupt the Token privileges

◼ Steps:

◼ Again, leverage by design KASLR infoleak to disclose Token address

◼ Map the kernel page containing the Token to user-mode using the

vulnerability

◼ Overwrite the privileges bitfield to gain SeDebugPrivilege

◼ Spawn a SYSTEM shell

49

49

◼ 100% stable bug

◼ Missing probe are powerful bugs

◼ Especially this one since it gives read and write access

◼ Exploit takes less than 1 second

◼ Timeline: 1 day for manual review and exploit

◼ Worked on second try at P2O ! (Microsoft Defender blocked the first
attempt)

MSKSSRV – Exploit notes

50

DEMO

Conclusion

◼ Pwn2Own is a great opportunity to challenge yourself

◼ Very fun and ethical contest

◼ Large attack surface

◼ Lots of Windows kernel exploitation documentation available online

◼ Vulnerabilities have been fixed in June: CVE-2023-29360 & CVE-2023-29361

◼ Try it!

◼ Windows Kernel Security is slowly improving but still attackable
with limited means

52

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

THANK
YOU!

53

	Slide 1: Windows Kernel Security A Deep Dive into Two Exploits Demonstrated at Pwn2Own
	Slide 2: About me
	Slide 3: Agenda
	Slide 4
	Slide 5: Pwn2Own
	Slide 6: Pwn2Own – Windows entries
	Slide 7: Pwn2Own – Results
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Conclusion
	Slide 52
	Slide 53: THANK YOU!

